Literature on Cone Penetration Testing

Net area $A_N = \frac{A_N}{A_T}$

$A_L = \frac{(A_L - A_s)}{A_T}$

$A_s = \frac{F_{CONE TIP}}{A_T} = q_L + u (1-a)$

$A_i = \frac{F_{SLEEVE}}{A_T} = f_i - (u A_L - u_s A_s) / A$

Estimation of foundation settlements in sand from CPT
Robertson, PK
American Society of Civil Engineers, ASCE. Geotechnical Special Publication 27, 1991, s 764-775

In situ testing and its application to foundation engineering
Robertson, PK
Canadian Geotechnical Journal, 1986, vol 23, nr 4, s 573-594

In-situ stress determination in sands using pen devices
Robertson, PK
British Columbia University. Civil Engineering Series; 99, 1986, 22 s

Soil classification using the e-c curve
Robertson, PK
Canadian Geotechnical Journal, 1986, s 151-158

Swedish Geotechnical Institute
Literature on Cone Penetration Testing

- SGI Literature Service 2
- Preface 3
- Literature 4
- Author index 46
- More on SGI Literature Service 55

Swedish Geotechnical Institute

ISSN 1100-6692
ISRN SGI-VARIA--95/441--SE
Assists in keeping you up to date with
- Geotechnical literature from the whole world - concerning everything from piles to energy and environmental applications
- Standards, rules and specifications
- Organisations and companies
- Future courses and conferences

Our service
- The Accession List - with the latest geotechnical literature in the SGI library. Free of charge
- Literature retrievals - in our own and other relevant databases
- Loans - providing loans and copies
- Inquiries - answering questions as the Swedish geotechnical information centre

Our tools
- The SGI library - Sweden’s central library in the area of geotechnology with 90,000 documents
- SGILINE - our own database containing more than 45,000 documents
- External databases in Sweden and abroad
- The geotechnicians of the SGI - 50 experienced research and consulting engineers with knowledge of your problem
- Vast network of contacts - with Swedish and foreign research organisations

SGILINE - Contents
- Foundation & Reinforcement 26%
- Soil & Rock Mechanics 25%
- Properties of Soil & Rock 20%
- Site Investigations 7%
- Environmental Geotechnics 7%
- Geology 7%
- Snow and Ice Mechanics,
 Energy, Building Materials etc 8%

SGILINE - Language
70% of the material is written in English
This bibliography contains 782 references to literature about Cone Penetration Testing. The bibliography is a summary of publications in the area of CPT and can be used as a state of the art. The references have been retrieved from the SGI literature data base, SGILINE. The major part of the references are to literature published from 1974 up to the present.

We have spent quite some time trying to make a suitable subject division of the CPT complex only to conclude that it was too great an achievement. As a consequence, the name of the authors have been arranged in alphabetical order. On the pages 46 to 54 you will find an index of the names of all the authors with a page reference.

The bibliography is complementary to the Proceedings of CPT'95, consequently no references from the conference are included.

We hope you will find this compilation useful.

SGI Literature Service

Penetration testing in the UK. Geotechnology conference organized by the Institution of Civil Engineers and held in Birmingham, 6-8 July 1988. Proceedings (Thomas Telford), 1989, 370 s

Portable, electrical, friction-sleeve, cone, penetrometer. Ed. by J.S. MacGregor (Macsil Pty. Ltd.) 1981, 128 s

Pressuremeter, cone penetrometer, and dilatometer for foundation design. College Station, Texas, August 17-18. Proceedings Texas A&M University 1992

Report of the Sub-committee on the penetration test for use in Europe with recommended standards for the cone penetration test, the dynamic probing test, the SPT test and the weight sounding test/ International Society for Soil Mechanics and Foundation Engineering, 1979, /1979/, /SS/ s

Seminar on cone and pressuremeter testing, Sydney, June 2, 1989 University of Sydney, Civil and Mining Engineering / Centre for Geotechnical Research, 1989, ca 66 + /20/ s
In situ testing: new developments
Aas,G, Lacasse,S, Lunne,T, Madshus,C

Use of in situ tests for foundation design on clay
Aas,G, Lacasse,S, Lunne,T, Høeg,K
ASCE Geotechnical Special Publication 6, 1986, s 1-30

Practical note on the evaluation of a pile load using cone penetration test results
Abdrabbo,FM, Mahmoud,MA

Strain field around cones in steady penetration
Acar,YB, Tumay,MT
ASCE. Journal of Geotechnical Engineering 1986, vol 112, nr 2, s 207-213

Penetration testing in tropical laterite and residual soils - Nigerian experience
Ajayi,LA, Bolelgun,LA
International symposium on penetration testing, 1, ISOPT-1, Orlando, Mars 1988. Proceedings, Vol. 1, s 315-328

Cone penetration tests on artificially cemented sands
Akili,W, Al-Joulini,NMA

Low strain shear modulus by indirect methods
Alba,P.de, Benoit,J, Pass,DG, Carter,JJ

Miniature vane and cone penetration tests during centrifuge flight
Almeida,MSS, Parry,RHG
ASTM. Special Technical Publication; STP 1014 1988, s 209-219

Small cone penetrometer tests and piezocone tests in laboratory consolidated clays
Almeida,MSS, Parry,RHG
ASTM Geotechnical Testing Journal, 1985, vol 8, nr 1, s 14-24

Studies of vane and penetrometer tests during centrifuge flight
Almeida,MSS, Parry,RHG

Tests with centrifuge vane and penetrometer in a normal gravity field
Almeida,MSS, Parry,RHG

Tests in small calibrated chamber: experimental and numerical analysis
Al-Mukhtar,M

Monotonic and cyclic penetration tests in calibrated chamber
Al-Mukhtar,M, Robinet,JC, Shahrouq,I

Entwicklungen bei Drucksondierungen an Deponienstandorten
Ammann,P, Beringen,FL, Wollenhaupt,H
Geotechnik, 1986, vol 9, nr 3, s 117-124

Pressio-penetrometer for geotechnical surveys on land and offshore
Amar,S, Baguelin,F, Jezequel,JF

Self-boring placement method and soft clay investigation
Amar,S, Baguelin,F, Frank,R, Jezequel,JF
International symposium on soft clay, Bangkok, July 1977. Proceedings, s 337-357

Some problems on the in-situ measurement of the shearing resistance in fine soils
Amar,S, Baguelin,F, Jezequel,JF, Lemasson,H

Utilisation du penetrometre statique dans les laboratoires des ponts et chaussées
Amar,S, Corte,JF, Waschkowski,E

Quelques applications de l’essai au piezocone
Amar,S, Corte,JF, Waschkowski,E
International conference on soil mechanics and foundation engineering, 12, Rio de Janeiro, August 1989. Proceedings, Vol 1, s 151-152
Essais en place et en laboratoire sur sols cohérent: comparaisons des résultats
Amar, S, Jeaqueleu, JF
Laboratoires des Ponts et Chausées. Bulletin de Liaison 1972, nr 58, s 97-108

Contribution au dimensionnement des fondations superficielles à l'aide de l'essai au pénétromètre statique
Amar, S, Morbois, A
Laboratoires des Ponts et Chausées. Bulletin de Liaison, 141 1986, s 37-43

Essais de penetration des sols et la prevision du comportement des fondations profondes
Amar, S, Waschkowski, E
Laboratoires des Ponts et Chausées. Bulletin de Liaison, 135 1985, s 85-94

Evaluation of the undrained shear strength from static cone penetration tests in a soft silty clay in Patras, Greece
Anagnostopoulos, AG

Exploration, sampling and in-situ testing of soft clay
Andresen, A
Soft clay engineering. Developments in geotechnical engineering, 20, 1981, s 239-308

Procedures used to obtain soil parameters for foundation engineering in the North Sea
Andresen, A, Berre, T, Kleven, A, Lonne, T
Marine Geotechnology, 1979, vol 3, nr 3, s 201-266

Penetration tests in liquefiable gravels
Andrus, RD, Towed, TL

Comparison of SPT, CPT, SV and electrical methods of evaluating earthquake induced liquefaction susceptibility in Ying Kou City during the Haicheng earthquake
Arulavandan, K, Yogachandran, C, Mwegoda, NJ
ASCE Geotechnical Special Publication 6, 1986, s 389-415

New method for evaluating liquefaction potential
Arulmoli, K, Arulavandan, K, Seed, HB
ASCE Journal of Geotechnical Engineering 1985, vol 111, nr 1, s 95-114

Analysis of cone penetrometer data
Arvati, S, Anderson, LR, Sharp, KD
Engineering geology and soils engineering symposium, 19, Pocatello, ID, March-April, 1982. Proceedings, s 125-i43

Cone penetration and engineering properties of the soft Orinoco Clay
Azzouz, AS, Baligh, MM, Ladd, CC

CPT and DMT testing of highway pavements in Florida
Badu-Tweneboah, K, Bloomequist, DG, Ruh, BE, Miley, WP

Density prediction using a static cone penetrometer
Baghdadi, ZA, Ghazali, FM, Khan, AM
International symposium on penetration testing, 1, ISOPT-1, Orlando, Mars 1988. Proceedings, Vol. 2, s 635-641

Penetration testing in glacial till
Baker, PI, Gardener, R

Cone resistance in dry N.C. and O.C. sands
Baldi, G, Bellotti, R, Chionna, VN, Jamialkowski, M, Pasqualini, E
Cone penetration testing and experience, St. Louis, MO, Oct. 1981. Proceedings, s 145-177

Stiffness of sands from CPT, SPT and DMT - a critical review
Baldi, G, Bellotti, R, Chionna, VN, Jamialkowski, M
Penetration testing in the UK. Geotechnology conference, Birmingham, July 1988. Proceedings, s 299-305

Cone resistance of a dry medium sand
Baldi, G, Bellotti, R, Chionna, VN, Jamialkowski, M, Pasqualini, E

Design parameters for sands from CPT
Baldi, G, Bellotti, R, Chionna, VN, Jamialkowski, M, Pasqualini, E
Modulus of sands from CPT's and DMT's
Baldi,G, Bellotti,R, Ghionna,VN, Jamiolkowski,M, Lo Presti,DCF
International conference on soil mechanics and foundation engineering, 12, Rio de Janeiro, August 1989. Proceedings, Vol 1, s 165-170

Seismic cone in Po River sand
Baldi,G, Bruzzi,D, Superbo,S, Battaglio,M, Jamiolkowski,M

Theory of deep site static cone penetration resistance
Baligh,MM
Massachusetts Institute of Technology. Civil engineering department. Report; R75-56, 1975, 133 s

Piezocone penetrometer
Baligh,MM, Azzouz,AS, Wissa,AEZ, Martin,RT, Morrison,MJ
Cone penetration testing and experience, St. Louis, MO, Oct. 1981. Proceedings, s 247-263

Pore pressure dissipation after cone penetration
Baligh,MM, Levadoux,JN
Massachusetts Institute of Technology. Sea Grant College Program Report; MITSG 80-13, 1980, 367 s

Analysis of wedge penetration in clay
Baligh,MM, Scott,RF
Geotechnique, 1976, vol 26, nr 1, s 185-208

Quasi-static deep penetration in clays
Baligh,MM, Scott,RF
ASCE. Geotechnical Engineering Division. Journal 1975, vol 101, nr GT11, s 119-1133

Cone penetration in soil profiling
Baligh,MM, Vivarat,V, Ladd,CC
ASCE. Geotechnical Engineering Division. Journal 1980, vol 106, nr GT4, s 447-461

Exploration and evaluation of engineering properties for foundation design of offshore structures
Baligh,MM, Vivarat,V, Ladd,CC
Massachusetts Institute of Technology, 1979, 267 s

In situ measurements in a marine clay
Baligh,MM, Vivarat,V

Interpretation of CPT's and CPTU's, Part 1-2
Battaglio,M, Bruzzi,D, Jamiolkowski,M, Lancellotta,R, Baldi,G, Bellotti,R, Ghionna,VN
International geotechnical seminar on field instrumentation and in-situ measurements, 4, Singapore, Nov. 1986. Proceedings, s 129-156

Considerazioni sulla prova penetrometrica statica nei terreni coesivi sature
Battaglio,M, Jamiolkowski,M, Lancellotta,R, Pasqualini,E
Convegno Italiano di Geotecnica, 13, Merano 1978 /Preprint of paper/ 12 s

Piezometer probe test in cohesive deposits
Battaglio,M, Jamiolkowski,M, Lancellotta,R, Maniscalco,R
Cone penetration testing and experience, St. Louis, MO, Oct. 1981. Proceedings, s 264-302

Digital filtering techniques for interpreting seismic cone data
Baziw,EJ
ASCE. Journal of Geotechnical Engineering 1993, vol 119, nr 6, s 998-1018

Cone penetration test in sands; Part 1: state parameter interpretation
Been,K, Crooks,JHA, Becker,DE, Jefferies,MG
Geotechnique, 1986, vol 36, nr 2, s 239-249

Critical appraisal of CPT calibration chamber test
Been,K, Crooks,JHA, Rotenberg,L
International symposium on penetration testing, 1, ISOPT-1, Orlando, Mars 1988. Proceedings, Vol. 2, s 651-660

Interpretation of material state from the CPT in sands and clays
Been,K, Crooks,JHA, Jefferies,MG

Cone penetration test in sands, 2: General inference of state
Been,K, Jefferies,MG, Crooks,JHA, Rotenberg,L
Geotechnique, 1987, vol 37, nr 3, s 285-299

Determination of sand strength for limit state design
Been,K, Jefferies,MG
Danmark Geoteknisk Forening. DGF-Bulletin 10, vol. 1, s 101-110

Towards systematic CPT interpretation
Been,K, Jefferies,MG

Cone penetration test calibration for Erksak (Beaufort Sea) sand
Been,K, Lingnau,BE, Crooks,JHA, Leach,B
Canadian Geotechnical Journal, 1987, vol 24, nr 4, s 601-610

Bearing capacity of displacement piles in stiff fissured clays
Beer,EE,de, Lousberg,E, Wallays,M, Carpentier,R, Jaeger,J,de, Paquay,J
I.R.S.I.A. Comptes rendus de recherches, 1977, mars nr 39, 136 s
LITERATURE ON CONE PENETRATION TESTING

Cone penetration tests, pile bearing capacity and the thesis of Rollberg
Begemann, HKSP

Design, construction and use of a calibration chamber
Bellotti, R, Bizzgi, G, Ghionna, VN

Saturation of sand specimen for calibration chamber tests
Bellotti, R, Crippa, V, Pedroni, S, Ghionna VN

Shear strength of sand from CPT
Bellotti, R, Ghionna, VN, Janiolkowski, M, Lancellotta, R, Robertson, PK

Design parameters of cohesionless soils from in situ tests
Bellotti, R, Ghionna, VN, Janiolkowski, M, Manassero, M, Pasqualini, E
Transportation Research Record 1235, 1989, s 45-54

Influence of rate of penetration on static cone resistance values in Connecticut River Valley varved clay
Bemben, SM, Myers, DA
American Society of Civil Engineers, ASCE. Geotechnical Special Publication 27, 1991, s 185-200

Settlement of shallow foundations in sands selection of stiffness on the basis of penetration resistance
Berardi, R, Janiolkowski, M, Lancellotta, R
European symposium on penetration testing, ESOPT, Stockholm, June 1974. Proceedings, Vol. 2/2, s 33-34

Deformation characteristics of cohesionless soils from in situ tests
Bellotti, R, Ghionna, VN, Janiolkowski, M, Lancellotta, R
European symposium on penetration testing, ESOPT, Stockholm, June 1974. Proceedings, Vol. 2/2, s 105-114

Partial safety factors in pile bearing capacity
Beer, EE, de, Lousberg, E, Jonghe, A, de, Carpentier, R, Wallays, M

Statisch sonderen in Vaste kleilagen
Beer, EE, de
Polytechnisch Tijdschrift. Editie Bouwkunde, Wegen-en Waterbouw, 1978, nr 8, 13 s

Analysis of the results of loading tests performed on displacement piles of different types and sizes penetrating at a relatively small depth into a very dense sand layer
Beer, EE, de, Lousberg, E, Jonghe, A, de, Carpentier, R, Wallays, M

Scale effects in results of penetration tests performed in stiff clays
Beer, EE, de, Lousberg, E, Wallays, M, Carpentier, R
European symposium on penetration testing, ESOPT, Stockholm, June 1974. Proceedings, Vol. 2/2, s 105-114

Draagvermogen van stalen liggerpalen
Beer, EE, de, Scholtes, P, Carpentier, R
Rijksinstituut voor Grondmechanica, 1982, 126 s

Computation of the load/settlement behaviour of HP-bearing piles
Beer, EE, de, Weber, L

Influence of excavation on soil strength below excavation level
Begemann, HKSP
European symposium on penetration testing, ESOPT, Stockholm, June 1974. Proceedings, Vol. 2/2, s 613-616

Evaluation of sand strength from CPT
Bellotti, R, Ghionna, VN, Janiolkowski, M, Manassero, M, Pasqualini, E

Influence of rate of penetration on static cone resistance values in Connecticut River Valley varved clay
Bemben, SM, Myers, DA
American Society of Civil Engineers, ASCE. Geotechnical Special Publication 27, 1991, s 185-200

Latest developments in static cone penetrometers and other soil testing equipment (on land - offshore)
Berg, AP, van den

Influence of excavation on soil strength below excavation level
Begemann, HKSP
European conference on soil mechanics and foundation engineering, 6, Vienna, Austria, March 1976. Proceedings, Vol. 1, 2, s 613-616

Case history: settlement of foundations in sand
Begemann, HKSP
Rijksdienst voor Grondmechanica, 1982, 126 s
New generation of highly sophisticated, static cone penetrometers, soil sampling - and auxiliary equipment for in situ soil investigation

Berg, AP, van den

Summary of the actual state of affairs and latest developments in seabed static cone penetrometering

Berg, AP, van den

European standard on penetration testing - a necessity

Bergdahl, U
Sondierungen und in situ Messungen. Berichte eines Symposiums, Wien, Juni 1979, s 87-98

Sondering försök i Amsterdam 1981-1982

Bergdahl, U
Swedish Geotechnical Institute. SGI Varia; 110, 1982, 20 s

Sonderingsteknikens utveckling i Sverige - en redovisning av metodernas utveckling och förekommande utvärderingsmetoder

Bergdahl, U
Swedish Geotechnical Institute. SGI Varia; 166, 1986, 27 s

Bestämning av jordegenskaper med sonden - en litteraturstudie

Bergdahl, U, Eriksson, U
Swedish Geotechnical Institute. SGI Rapport; 22, 1983, 96 s

Soil characteristics from penetration test results: A comparison between various investigation methods in non-cohesive soils

Bergdahl, U, Ottosson, E
International symposium on penetration testing, 1, ISOPT-1, Orlando, March 1988. Proceedings, Vol. 1, s 399-405

Use of penetrometers in Sweden

Bergdahl, U
Swedish Geotechnical Institute. SGI Varia; 21, 1980, /24/ s

Settlement of a ring foundation using cone data

Blushan, K, Boniadi, F

Correlations between the results of sounding and laboratory tests for Rhineland silt and their use for calculations for foundation design

Biedermann, B

Statistical comparison between the results of dynamic and static penetrometers for Rhineland silt

Biedermann, B
European symposium on penetration testing, 2, ESOPT, Amsterdam, May 1982. Proceedings, Vol. 1, s 235-238

Vergleichende Untersuchungen mit Sonden in Schluff. Diss

Biedermann, B
Aachen Technische Hochschule. Forschungsberichte aus Bodenmechanik und Grundbau. Heft 9, 1984, 217 s

Modified penetrometer for cone and specific resistance of soils measurements

Borowczyk, M

Determination of in-situ soil parameters by use of radiometric methods, sounding test and pressuremeter

Borowczyk, M, Frankowski, Z

Dynamic and static sounding results interpretation

Borowczyk, M, Frankowski, Z

Physico-mechanical properties of weak soils determined by field methods

Borowczyk, M, Frankowski, Z
Archivum Hydrotechniki, 1975, vol 22, nr 3/4, s 367-388

Finite element analysis of static penetration test

Borst, R, de, Vermeer, F A

Possibilities and limitations of finite elements for limit analysis

Borst, R, de, Vermeer, F A
Geotechnique, 1984, vol 34, nr 2, s 199-210

Cone penetration technology for subsurface characterization

Bowers, U, Daniel, D E
Geotechnical News, 1994, vol 12, nr 3, s 24-29

Summary report of the workshop on advancing technologies for cone penetration testing for geotechnical and geoenvironmental site characterization, Austin, Texas, June 14-15, 1994

Bowers, U, Daniel, D E
University of Texas. Civil Engineering, 1994, ca /100/ s
Soil disturbance from pile driving in sensitive clay
Bozozuk, M, Fellenius, B H, Samson, L

Use of the piezocone test for monitoring the strength of rock paste
Braithwaite, P A, Ghataora, G S, Coutts, J S
Penetration testing in the UK. Geotechnology conference, Birmingham, July 1988. Proceedings, s 161-166

Interpretation of Dutch cone tests in soft Bangkok clay
Brand, E W, Moh, Z C, Wirojanagud, P

Evaluation of the load-deformation relationship for piles using data from penetration testing
Bredenberg, H, Hintze, S

Predictions of pile behaviour from Dutch cone soundings in Bangkok clay
Brenner, R P, Panichpatananon, S

Evaluation of cone penetration test methods using 98 pile load tests
Briaud, J L

Driven then pushed minicone tests in a sand chamber
Briaud, J L, Khalaf, K
American Society of Civil Engineers, ASCE. Geotechnical Special Publication 38, 1993, s 14-26

Cone penetrometer test
Briaud, J L, Tirman, J
US Department of Transportation. Federal Highway Administration FHWA- SA-91-043, 1992, 161 s

Coefficient of variation of in situ tests in sand
Briaud, J L, Tucker, L M
Probabilistic characterization of soil properties: Bridge between theory and practice, Atlanta, GA, May 1984. Proceedings, s 119-139

Behavior of piles and pile groups in cohesionless soils
Briaud, J L, Tucker, L, Lytton, K L, Cylie, H M

Penetration tests
Broms, B B
Franki International Technology. FIT Report; 2/87, 1987, 29 s

History of soil penetration testing
Broms, B B, Flodin, N

Analysis of cone resistance ‘qc’ and sleeve friction ‘fr’ as interactive stresses, resulting in a new pile bearing capacity design method
Broug, N W A

Establishment of in-situ horizontal stress in granular material using local friction (cpt) as governing parameter
Broug, N W A

Determination of stress state of clays by piezocone
Dis
Brown, D N
Georgia Institute of Technology. Civil and Environmental Engineering, 1993, 168 s

Diagraphies et les essais de mecanique des sols en place
Bru, J, Ledoux, J L, Menard, J, Waschkowski, E

Underwater static penetrometer
Bruzzi, D

Advanced static penetrometer
Bruzzi, D, Cestari, F
European symposium on penetration testing, 2, ESOPT, Amsterdam, May 1982. Proceedings, Vol. 2 s 479-489

Effect of pore pressure on point resistance using electrical cones in soft clay
Bruzzi, D, Cestari, F

Design of friction piling in Mississippi embayment sands using cone penetrometer
Buhr, C A, Houghton, L E, Leonard, R J

Investigation of railroad subgrade properties
Bukoski, R F, Sefig, E T
Cone penetration testing and experience, St. Louis, MO, Oct. 1981. Proceedings, s 228-246
Calcul d'un pieu visse moule dans une argile plastique
Bustamante,M, Gianeselli,L, Cambier,JC
Laboratoires des Ponts et Chaussees. Bulletin de Liaison 1983, nr 127, s 53-65

Calcul de la capacite portante des pieux a partir des essais au penetrometre statique
Bustamante,M, Gianeselli,L
Laboratoires des Ponts et Chaussees. Bulletin de Liaison 1983, nr 127, s 73-80

Design of auger displacement piles from insitu tests
Bustamante,M, Gianeselli,L
International geotechnical seminar on deep foundations on bored and auger piles, BAP 2, 2, Ghent, Belgium, June 1993. Proceedings, s 21-34

Pile bearing capacity prediction by means of static penetrometer CPT
Bustamante,M, Gianeselli,L

Prevision de la capacite portante des pieux isolés sous charge verticale
Bustamante,M, Gianeselli,L
Laboratoires des Ponts et Chaussees. Bulletin de Liaison 1981, nr 113, s 83-108

Ability of in situ testing to assess ground treatment
Butcher,AP, McElmeel,K

Investigation of a plane strain continuous penetration problem
Butterfield,R, Andrawes,KZ
Geotechnique 1972, vol 22, nr 4, s 597-617

Continuous penetration testing in granular materials.
A new analytical solution
Butterfield,R, Last,NC

Considerations on safety of piled raft foundations
Calle,EOF, Heijnen,WJ

Interpretation of seismic cone data using digital filtering techniques
Campanella,RG, Baziw,EJ, Sully,JP

Preliminary evaluation of Menard pressuremeter, cone penetrometer and standard penetration tests in the lower Mainland, British Columbia
Campanella,RG, Berzina,WE, Shields,DH
British Columbia University. Civil Engineering. Soil Mechanics Series; 40, 1979, 52 s

Seismic piezocone: A practical site investigation tool
Campanella,RG, Davies,MP

Geoenvionmental subsurface site characterization using in-situ soil testing methods
Campanella,RG, Davies,MP, Boyd,TJ, Everard,SL
International congress on environmental geotechnics, 1, Edmonton, Alberta, July, 1994. Proceedings, s 153-159

Pore pressures during cone penetration testing
Campanella,RG, Gillespie,D, Robertson,PK

Evaluation of cone pressuremeter tests in soft cohesive soils
Campanella,RG, Howie,JH, Sully,JP, Robertson,PK

New approach to measuring dilatancy in saturated sands
Campanella,RG, Kohan,MI
ASTM. Geotechnical Testing Journal 1993, vol 16, nr 4, s 485-495
In situ testing of seabottom sediments, Tuktoyaktuk area, N.W.T.
Campanella, RG, Kurfurst, PJ

Applied cone research
Campanella, RG, Robertson, PK
Cone penetration testing and experience, St. Louia, MO, Oct. 1981. Proceedings, s 343-362

Current status of the piezocone test
Campanella, RG, Robertson, PK

Cone penetration testing in deltaic soils
Campanella, RG, Robertson, PK, Gillespie, D
Canadian Geotechnical Journal, 1983, vol 20, nr 1, s 23-35

Factors affecting the pore water pressure and its measurement around a penetrating cone
Campanella, RG, Robertson, PK, Gillespie, D

In-situ testing in saturated silt, (drained or undrained?)
Campanella, RG, Robertson, PK, Gillespie, D

Seismic cone penetration test
Campanella, RG, Robertson, PK, Gillespie, D
ASCE Geotechnical Special Publication 6, 1986, s 116-130

Recent developments in in-situ testing of soils
Campanella, RG, Robertson, PK, Gillespie, D, Greig, J

Piezometer-friction cone investigation at a tailings dam
Campanella, RG, Robertson, PK, Gillespie, D, Klohn, EJ
Canadian Geotechnical Journal, 1984, vol 21, nr 3, s 551-562

Seismic cone penetration testing in the Beaufort Sea
Campanella, RG, Robertson, PK, Gillespie, D, Laing, N, Kurfurst, PJ
British Columbia University. Department of Civil Engineering. Soil Mechanics Series nr 95/96, 1987, 18 s

Seismic cone penetration testing in the near offshore of the Mackenzie Delta
Campanella, RG, Robertson, PK, Gillespie, D, Laing, N, Kurfurst, PJ
Canadian Geotechnical Journal, 1987, vol 24, nr 1, s 154-159

Piezometer-friction cone investigation at a tailings dam
Campanella, RG, Robertson, PK, Klohn, EJ, Gillespie, D
British Columbia University. Civil Engineering. Soil Mechanics Series; 50, 1982, 24 s

Guidelines for using the CPT, CPTU and Marchetti DMT for geotechnical design, Vol. 1-4
Campanella, RG, Robertson, PK, Schmertmann, JH
Schmertmann and Crapps, Inc 1988, 1: 82 s; 2: 198 + 115/1 s; 3: 300 s /var pag; 4: 140 s

Seismic cone analysis using digital signal processing for dynamic site characterization
Campanella, RG, Stewart, WP
Canadian Geotechnical Journal, 1992, vol 29, nr 3, s 477-486

Low strain dynamic characteristics of soils with the downhole seismic piezocone penetrometer
Campanella, RG, Stewart, WP, Roy, D, Davies, MP
American Society for Testing and Materials, ASTM. Special technical publication STP 1213, 1994, s 73-87

Research and development of a lateral stress piezocone
Campanella, RG, Sully, JP, Greig, J, Jolly, G
Transportation Research Record 1278, 1990, s 215-224

Interpretation of piezocone soundings in clay - a case history
Campanella, RG, Sully, JP, Robertson, PK

Development and use of an electrical resistivity cone for groundwater contamination studies
Campanella, RG, Weemes, I
Canadian Geotechnical Journal, 1990, vol 27, nr 5, s 557-567

Cone penetration test for site characterization
Campanella, RG, Wickensmeisinghe, DS, Echezuria, RJ
Friction-cone penetration testing in alluvial clays
Cancelli,A, Guadagnini,R, Pellegrini,M

Surpression interstitielle de fonçage mesuree au mini-piezocone dans un sable
Canou,J, Dupla,JC, Dormieux,L

Mini piezocone (M-CPTU) investigation related to sand liquefaction analysis
Canou,J, El Hachem,M, Kattan,A, Juran,J

Relationship between the cone resistance and the undrained shear strength of stiff fissured clays
Carpentier,R
European symposium on penetration testing, 2, ESOPT, Amsterdam, May 1982. Proceedings, Vol. 2s 519-528

Interpretation of overconsolidation ratio from in situ tests in Recent clay deposits in Singapore and Malaysia
Chang,MF
Canadian Geotechnical Journal, 1991, vol 28, nr 2, s 210-225

Interpretation of static penetration tests in sand
Chapman,GA, Donald,IB

Time-dependent cone penetration resistance due to blasting
Charlie,WA, Roebyogo,MFJ, Doehring,DO
ASCE. Journal of Geotechnical Engineering, 1992, vol 118, nr 8, s 1200-1215

Analytical methods to predict pile capacities
Cheeks,FR
ASTM Special Technical Publication1978, nr 670, s 199-208

Piezocone evaluation of undrained shear strength in clays
Chen,BS, Mayne,PW

Profiling the overconsolidation ratio of clays by piezocone tests
Chen,BS, Mayne,PW
Georgia Institute of Technology, School of Civil and Environmental Engineering. Report GIT-CEEGEO-94-1, 1994, 279 s

Implications of observed deformations during cone penetration
Chen,PK, Bassett,RH
Penetration testing in the UK. Geotechnology conference, Birmingham, July 1988. Proceedings, s 251-256

New classification chart for soft soils using the piezocone test
Cheng-hou,Z, Grewe,G, Jekel,J, Rosenbrand,W
Engineering Geology, 1990, vol 29, nr 1, s 31-47

Characterizing spatial variability of a clay by geostatistics
Chiasson,P, Lafleur,J, Soulie,M, Law,KT
Canadian Geotechnical Journal, 1995, vol 32, nr 1, s 1-10

Interpretation of piezocone data after partially drained penetration
Chin,CT, Crooks,JHA, Enriquez,AS, Hu,IC

SPT-CPT correlations for granular soils
Chin,CT, Duann,SW, Kao,TC
International symposium on penetration testing, 1, ISOPT-1, Orlando, Mars 1988. Proceedings, Vol. 1, s 335-339

Piezocone testing on Bangkok subsoils
Chokechai Ukritchon
Asian Institute of Technology. AIT Thesis No GT-92-2, 1992, 156 s

Density changes of sand on cone penetration resistance
Chong,MK
International symposium on penetration testing, 1, ISOPT-1, Orlando, Mars 1988. Proceedings, Vol. 2s 707-714

Site investigation. A handbook for engineers
Clayton,CRI, Simons,NE, Matthews,MC
(Granada) 1982, 424 s

Analysis: Prediction of pile capacity using the cone penetration test
Corson,WM
Air Force Institute of Technology, 1989, 187 s

Comparison of field consolidation with laboratory and in situ tests
Crawford,CK, Campanella,RO
Canadian Geotechnical Journal, 1991, vol 28, nr 1, s 103-112

Penetration testing in Switzerland
Crettaz,P, Zeindler,H

Applications of the Dutch cone penetrometer for investigation of bridge foundation
Crichton,AJ, Witsendon,AP
Symposium /on/ in-situ testing for design parameters, Parkville, Nov. 1975. Papers - technical notes, 3 s
LITERATURE ON CONE PENETRATION TESTING

CPT interpretation in clays
Crooks, JHA, Been, K, Becker, DE, Jefferies, MG

Penetration testing in Sweden
Dahlberg, R

Modern cone penetration testing vehicle
Davidson, J, Bloomquist, D, G
ASCE Geotechnical Special Publication 6, 1986, s 502-513

Deformations in sand around a cone penetrometer tip
Davidson, J, Mortensen, R, Barreiro, D

Cone penetration test experience at Locks and Dam No. 26
Davidson, RR, Perez, JY
Cone penetration testing and experience, St. Louis, MO, Oct. 1981. Proceedings, s 394-412

Settlement predictions using piezocone
Davie, JR, Senopathy, H, Murphy, W
American Society of Civil Engineers, ASCE. Geotechnical Special Publication 40, 1994, s 818-829

Studies with centrifuge vane and penetrometer apparatus in a normal gravity field
Davies, MCR, Amedia, MSS, Parry, REG

Determination of shear strength and soil modulus from CPT and other in situ tests
Dayal, U

Effect of penetration rate on the strength of remoulded clay and sand samples
Dayal, U, Allen, JE
Canadian Geotechnical Journal, 1975, vol 12, nr 3, s 336-348

Note of friction ratio
Dayal, U, Allen, JH
Canadian Geotechnical Journal, 1975, vol 12, nr 4, s 524-526

Evaluation and analysis of electric cone penetrometer test results
Dayal, U, Jain, SK
Indian Geotechnical Journal, 1981, vol 11, nr 4, s 345-369

Developments of electrical penetrometer for site investigations
Dayal, U, Suppiah, A

Theoretical analysis of the cone penetration test in sands
Simone, P, de, Golia, G

Predicted and measured behavior of displacement piles in residual soils
Decourt, L, Niyama, S

CPT and shear strength of clay
Denver, H

Modulus of elasticity for sand determined by SPT and CPT
Denver, H

CPT offshore rig
Denver, H, Ris, H

Influence of the measuring step in discontinuous mechanical penetration tests
Depret, MUA
Lithological and stratigraphical interpretation of discontinuous mechanical penetration tests
Depret, MUA

Penetration testing in India
Desai, MD, Jain, GRS, Saran, S, Jain, PK

Cone penetration data developed for a nuclear power plant siting study
Deefulian, H

Contribution to the studies of bearing capacity of marine clays
Dias Machado, CF, Bogostian, F, Mello, RN, de, Masfeldt, AS

Liquefaction potential of fine cohesionless soils using the CPT
Diaz-Rodriguez, JA, Armijo-Palacio, G

Prediction of settlements and bearing capacities of shallow foundations by self-similar penetration
Dietrich, T, Holzlöhner, U, Lehner, J

Cone penetration testing and settlement of bridge footings on sands
DiMillio, AF
/Hand out at the ISOPT-1, March, 1988/
/1988?, 4 v/10/ s

Study of cone penetration tests in the Singapore marine clay
Dobie, MJD

Use of cone penetration tests in glacial till
Dobie, MJD

In situ measurement of volatile organic compounds in groundwater by methods coupled to the cone penetrometer
Doskey, PV, Aldstadt, JH, Kuo, RM, Constanza, JS, Erickson, MD
Argonne National Laboratory. Environmental Research Division, 1995, 8 s

SPT blowcount variability correlated to the CPT
Douglas, BJ
European symposium on penetration testing, 2, ESOPT, Amsterdam, May 1982. Proceedings, Vol. 1, s 41-46

Soil classification using electric cone penetrometer
Douglas, BJ, Olsen, RS
Cone penetration testing and experience, St. Louis, MO, Oct. 1981. Proceedings, s 269-227

Shear strength of cohesive soils and friction sleeve resistance
Drnevich, VP, Gorman, CT, Hopkins, TC

Penetration testing in Czechoslovakia
Drozd, K, Svasta, M

Influence of penetrometer characteristics on static penetration resistance
Durgunoglu, HT, Mitchell, JK

Static penetration resistance of soils, 1: Analysis
Durgunoglu, HT, Mitchell, JK
Conference on in situ measurement of soil properties, North Carolina State University, Raleigh, NC 1975. Proceedings, Vol. 1, s 151-171

Static penetration resistance of soils, 2: Evaluation of theory and implications for practice
Durgunoglu, HT, Mitchell, JK
Conference on in situ measurement of soil properties, North Carolina State University, Raleigh, NC 1975. Proceedings, Vol. 1, s 172-189

Penetration testing in Turkey
Durgunoglu, HT, Togrol, E
European symposium on penetration testing, ESOPT, Stockholm, June 1974. Proceedings, Vol. 1, s 137
Use of the electrical piezcone for mine tailings deposits
East, DR, Cincilla, WA, Hughes, JMO, Benoit, J
International symposium on penetration testing, 1, ISOPT-1, Orlando, Mars 1988. Proceedings, Vol. 2, s 745-750

Penetration testing in Canada
Eden, WJ

Tests with UBC seismic cone at three Norwegian research sites
Eidsmoen, T, Gillespie, D, Lanne, T, Campanella, RG
Norwegian Geotechnical Institute. Report No. 59040-1 1985, ca 130 s

Laboratory and field evaluation of cone penetrometers. Statistical evaluation of CPTs in Holmen sand
Eidsmoen, T, Howland, J, Kjesbu, E
Norges Geotekniske Institutt. Internal Report; 40015-9, 1985, 36 + /50/ s

Laboratory and field evaluation of cone penetrometers. Statistical evaluation of CPTs in Onsøy sand
Eidsmoen, T, Howland, J, Kjesbu, E
Norges Geotekniske Institutt. Internal Report; 40015-8, 1986, 45 + /60/ s

NGI har utprøvd canadisk trykksonde: Effektiv måling av skjærbølgehastighet
Eidsmoen, T, Lanne, T, Gillespie, D, Campanella, RG
Bygg, 1985, vol 33, nr 5, s 27-29

Analysis of piezocone dissipation data using dislocation methods
Elsworth, D
ASCE. Journal of Geotechnical Engineering, 1993, vol 119, nr 10, s 1601-1623

Dislocation analysis of penetration in saturated porous media
Elsworth, D

Settlement of footings on sand by CPT data
Elton, DJ
ASCE. Journal of Computing in Civil Engineering, 1987, vol 1, nr 2, s 99-113

Investigating a failed pile load test by subsurface sounding
El-Sohby, MA, Elleboudy, AM
In situ testing and field behaviour. Canadian geotechnical conference, 39, Ottawa, Aug. 1986. Preprint volume, s 139-141

ECPT investigation of a slurry trench cutoff wall
Engemoen, WO, Hawley, P
ASCE Geotechnical Special Publication 6, 1986, s 514-528

Geophysical system combining electrical resistivity and spontaneous potential for detecting, delineating, and monitoring slope stability
Erchul, RA, Noble, DF
Virginia Transportation Research Council, 1991, 163 s

Site investigation through penetration tests
Ergun, MU
European symposium on penetration testing, 2, ESOPT, Amsterdam, May 1982. Proceedings, Vol. 1, s 257-262

Comment on the use of the electrical friction cone penetrometer
Ervin, MC
Symposium /on/ in-situ testing for design parameters, Parkville, Nov. 1975. Papers - technical notes, 3 s

Development of electric static cone penetration testing in Great Britain from 1972-1992
Erwig, H
Ground Engineering, 1993, vol 26, nr 2, s 30-32, 34

Cone penetrometer testing in the UK
Erwig, H, Swain, CW
CIVIL Engineering, 1982, Sept, s 27-28, 31

Penetration testing in Spain
Escario, V
European symposium on penetration testing, ESOPT, Stockholm, June 1974. Proceedings, Vol. 1, s 107-113

Cone penetrometer use
Evans, B
Civil Engineering, 1981, May, s 32, 34, 36
Comparison of pressuremeter and piezocone methods of determining the coefficient of consolidation

Fahey, M, Goh, AL

Analyses statistiques comparées de penetromètres, scissomètres et pressiomètres auto-foreurs

Favre, JL

Centrifugal model of the cone penetrometer

Ferguson, KA, Ko, HY
Cone penetration testing and experience, St. Louis, MO, Oct. 1981. Proceedings, s 108-127

Probabilistic analysis of cone penetration testing data: Some problems and solutions

Ferronsky, VI, Divinsky, ML

Piezocone tests in the Rio de Janeiro soft clay deposit

Filho, PR, Alencar, JA

Penetration testing in Portugal

Folque, J

Correlations between soil parameters and penetration testing results

Formazin, J, Hausner, H

Seismic soil liquefaction at the waterfront

Forrest, JB, Ferritto, JM
Civil Engineering Laboratory. Technical Note; N-1555, 1979, 55 s

Seismic soil liquefaction studies

Forrest, JB, Ferritto, JM, Wu, G
Civil Engineering Laboratory. Technical Note; N-1566, 1979, 34 s

Site analysis for seismic soil liquefaction potential

Forrest, JB, Ferritto, JM, Wu, G
International conference on recent advances in geotechnical earthquake engineering and soil dynamics, St. Louis, MO, April-May, 1981. Vol. 1, s 155-160

Tests in alluvial sand with the PQS probe

Franklin, AG, Cooper, SS

Use of ‘penetrators’ for the measurement of the undrained shear strength of soft marine clays

Fremont, TJ
Penetration testing in the UK. Geotechnology conference, Birmingham, July 1988. Proceedings, s 241-245

Landslide investigation utilizing electric cone penetration testing

French, J, Kropf, A
ASCE Geotechnical Special Publication 6, 1986, s 529-544

Standard for interpreting soil penetrometer measurements

Fritton, DD
Soil Science, 1990, vol 150, nr 2, s 542-551

Waterfront electric cone penetration testing

Fuglevand, PF, Clough, HF, Paris, JR, Brigham, JE
ASCE Geotechnical Special Publication 6, 1986, s 546-559

Experimental study of compression moduli obtained by the CPT

Gaberc, A, Ajdic, I, Vogrinic, G

Penetration testing in Finland

Gardemeister, R, Tamminen, M
Suitcase cone system
Gardner, WS, Nathan, SV
Cone penetration testing and experience, St. Louis, MO, Oct. 1981. Proceedings, s 363-382

Static penetration tests and compressibility of soft normally consolidated clays
Genevois, R

Statistical analysis of cone penetration testing: An application
Ghinelli, A, Vannucchi, G

Cone pressuremeter tests in Po river sand
Ghidina, N, Jamiołkowski, M, Pedroni, S, Piccoli, S
International symposium on pressuremeter and its new avenues, 4, Sherbrooke, May 1995. Proceedings, s 461-470

Correlation of predicted and measured settlements in full scale loading on sand fill
Ghosh, N

Pressuremeter, laboratory and in situ test correlations for soft cohesive soils
Giannaros, H, Christodoulias, J

Settlements of two buildings supported on rafts: comparison with predicted settlement calculated from static cone penetrator data
Gwizdala, K, Lareal, P, Sanglerat, G
Conference on settlement of structures, Cambridge, April 1974, s 37-42

Consolidation characteristics from pore pressure dissipation after piezometer cone penetration
Gillespie, D, Campanella, R G

Correlation of static cone resistance with bearing capacity
Goel, M C

Various types of penetrometers, their correlations and field applicability
Goel, M C
European symposium on penetration testing, 2, ESOPT, Amsterdam, May 1982. Proceedings, Vol. 1, s 263-270

New guidelines for the use of the inclinometer with the cone penetration test
Graaf, H C, van de, Jekel, J W A

Performance of deep CPT's
Graaf, H C, van de, Schenk, P

Half a century of static cone penetration techniques
Graaf, H C, van de, Vermeiden, J
LGM-Mededingen, 1988, 36 + 15/ s

Piezocene and other measurements in an overconsolidated glacial clay
Greeuw, G, Schokking, F

Cone penetration tests in dry Oosterschelde sand and the relation with a cavity expansion model
Greeuw, G, Smits, F P, Driel, P, van

Finite strain analysis for deep cone penetration
Gupta, R C

Piezoprobe determined coefficient of consolidation
Gupta, R C, Davidson, J L
Soils and Foundations, 1986, vol 26, nr 3, s 12-22

Large diameter bored piles in non-cohesive soils. Determination of the bearing capacity and settlement from results of static penetration tests (CPT) and standard penetration test (SPT)
Gwizdala, K
Swedish Geotechnical Institute. SGI Rapport; 26, 1984, 129 + 15/ s

18
Factors influencing the interpretation of in situ strength tests in insensitive low plasticity clays
Hight, DW, Gens, A, Campos, TMP, de, Takahashi, M

Determination of deformation and shear strength parameters for sands using the electrical friction-cone penetrometer
Holden, JC
Nordisk Geoteknikermøde i København 22.-24.5. 1975. Foredrag, s 627-643

Penetration testing in Australia
Holden, JC

Pressuremeter and cone penetration testing
Holden, JM
Ground Engineering, 1988, vol 22, nr 4, s 8-16

Microcomputer design of piles using CPT tests
Holeyman, A, Wautier, J, Montoisis, B
Franki International Technology. FIT Report; 4/88, 1988, 8 s

Use of cone penetration testing to obtain environmental data
Horsnell, MR

Comparison of predicted and observed pile capacity
Horvitz, GE, Stettler, DR, Crowser, JC
Cone penetration testing and experience, St. Louis, MO, Oct. 1981. Proceedings, s 413-433

Calibration of the cone pressuremeter in sand
Houlsby, GT

Calibration chamber tests of a cone penetrometer in sand
Houlsby, GT, Hitchman, R
Geotechnique, 1988, vol 38, nr 1, s 39 - 44

Development of the cone pressuremeter
Houlsby, GT, Nutt, NRF

Interpretation of shear moduli from cone pressuremeter tests in sand
Houlsby, GT, Schneider, F
Geotechnique, 1994, vol 44, nr 1, s 147-164
Analysis of piezocone in clay
Houlsby, GT, Teh, CI

Analysis of the cone pressuremeter test in clay
Houlsby, GT, Withers, NJ
Geotechnique, 1988, vol 38, nr 4, s 575-587

Determination of undrained strengths by cone penetration tests
Houlsby, GT, Wroth, CP

Use of penetration tests in geotechnical survey of sludge beds
Hrazdilova, I

Cone penetration of partially saturated sands
Hryciw, RD, Dowding, CH

CPT and DMT in evaluation of blast densification of sand
Hryciw, RD, Dowding, CH
International symposium on penetration testing, 1, ISOPT-1, Orlando, Mars 1988. Proceedings, Vol. 1, s 521-526

Strain-path analyses for arbitrary three-dimensional penetrometers
Huang, AB

Analyses of laterally loaded drilled shafts using in situ test results
Huang, AB, Lutenegger, AJ, Islam, MZ, Miller, GA
Transportation Research Record 1235, 1986, s 617-634

Analytical study of cone penetration tests in granular material
Huang, AB, Ma, MY
Canadian Geotechnical Journal, 1994, vol 31, nr 1, s 91-103

Calculation of bearing capacity for precast pile by SCPT and equipment used
Huang, SM

Quantifizierung von Sondierergebnissen zur Bestimmung von Bodenkennwerten
Hubacek, H
Geotechnik, 1986, vol 9, nr 4, s 206-213

Automated stratigraphic classification of CPT data
Huijzer, GP

Lateral stress measurement during cone penetration
Huntsman, SR, Mitchell, JK, Kleibuk, LW, Shinde, SB
ASCE Geotechnical Special Publication 6, 1986, s 617-634

Untersuchungen zur Auswertung von Drucksondierungen
Ihle, F
Geotechnik, 1995, vol 18, nr 2, s 65-73

Evaluation of deformation and bearing capacity parameters of foundations, from static CPT-results
Impe, WF, van
International geotechnical seminar on field instrumentation and in-situ measurements, 4, Singapore, Nov. 1986. Proceedings, s 51-70

Considerations on the effects of installation on the displacement auger pile capacity
Impe, WF, van, Peiffer, H, Haegeman, W

Statistical evaluation of simple rheological CPT data
Imre, E

Rheological tests with cone penetrometer
Imre, E, Tarcsai, GY, Györffy, J, Csígas, F

Application of statistical methods to the interpretation of cone tests and use in subsequent design
Ims, BW, Toolan, FE
Investigation of shear strength of slurry clay
Inoue,T, Tan,TS, Lee,SL
Soils and Foundations, 1990, vol 30, nr 4, s 1-10

Static cone tests and settlement of calcareous desert sands
Ismael,NF, Jeragh,AM
Canadian Geotechnical Journal, 1986, vol 23, nr 3, s 297-303

Cone resistance and liquefaction strength of sand
Iwasaki,K, Tanizawa,F, Zhou,SG, Tatsuoka,F

Comparison of electric piezocone tips at the Bothken­nar test site
Jacobs,PA, Coutts,JS
Geotechnique, 1992, vol 42, nr 2, s 369-375

Quick soil surveys by improved penetrometers
Jain,AK, Jain,VK

Micro-computer based data acquisition system for the cone penetration test
Jaksa,MB, Kaggwa,WS

Penetration resistance and liquefaction of sands
Jamiolkowski,M, Baldi,G, Bellotti,R, Ghionna,V, Pasqualini,E

New correlations of penetration tests for design practice
Jamiolkowski,M, Ghionna,VN, Lancellotta,R, Pasqualini,E

Design parameters for soft clays
Jamiolkowski,M, Lancellotta,R, Marchetti,S, Nova,R, Pasqualini,E

Undrained strength from CPT
Jamiolkowski,M, Lancellotta,R, Torda,M, Battaglio,M

Effective stress interpretation of in situ static penetration tests
Janbu,N, Seniusset,K

Verification of cone resistance - state parameter function in sand strata
Jefferies, MG

Use of CPTu to estimate equivalent SPT N60
Jefferies, MG, Davies, MP
ASTM. Geotechnical Testing Journal, 1993, vol 16, nr 4, s 458-468

Use of CPT to estimate equivalent SPT N60
Jefferies, MG
Geotechnical Testing Journal, 1993, vol 16, nr 4, s 458-468

Penetration testing in the Beafort Sea
Jefferies, MG, Funegard, EG
Geotech AB24 s

Experience with measurement of horizontal geostatic stress in sand during cone penetration test profiling
Jefferies, MG, Jonsson, L, Been, K
Geotechnique, 1987, vol 37, nr 4, s 483-498

Characterization of sandfills with the cone penetration test
Jefferies, MG, Rogers, BT, Griffin, KM, Been, K

Wear of the friction sleeve and its effect on the measured local friction
Jekel, JWA

Penetration testing applications in China
Jian-Xin Yuan

CPT-sondering i finjord. Olika aspekter på handhava­nde av utrustning och uttolkning av jordparametrar
Johannesson, LE
Lunds Tekniska Högskola. Geoteknik. TVGT-1003, 1990, 176 s
Statistical analysis of soundings and test results from a silty clay
Johannessen, L.E

In situ measurement of soil properties
John, SBP
California State Department of Transportation, 1980, 181 s

In situ testing procedures
John, SBP
California Department of Transportation, 1980, 91 s

Prediction of time for consolidation from sounding
Jones, GA

Piezometer penetration testing - CUPT
Jones, GA, Rust, E

Piezometer probe (CUPT) for subsoil identification
Jones, GA, Rust, E

Mine tailings characterization by piezometer cone
Jones, GA, Zyl, L. van, Rust, E
Cone penetration testing and experience, St. Louis, MO, Oct. 1981. Proceedings, s 303-324

Comparative measurements on the influence of the cone shape on results of soundings
Joustra, K

Results and interpretation of cone penetration test in soils of different mineralogic composition
Joustra, K, Gjøt, A. G., de

Soil stratification using the dual-pore-pressure piezocene test
Juran, J, Tumay, MT
Transportation Research Record 1235, 1989, s 68-78

CPT-Talkningsprocedurer
Jørgensen, M, Denver, H

Comparison between in situ cone resistance and laboratory strength for overconsolidated North Sea clays
Kjeke, O, Lunne, T, Clausen, C. F.
Marine Geotechnology, 1978, vol 3, nr 1, s 23-36
Effect of the penetration speed and the cone shape on the Dutch static cone penetration test results
Kok, L

Penetration testing in Israel
Komornik, A

In situ tests in a sand dune
Konrad, J M

Piezo-friction-cone penetrometer testing in soft clays
Konrad, J M
In situ testing and field behaviour. Canadian geotechnical conference, 39, Ottawa, Aug, 1986. Preprint volume, s 243-249

Piezo-friction-cone penetrometer testing in soft clays
Konrad, J M
Canadian Geotechnical Journal, 1987, vol 24, nr 4, s 645-652

Study of in-situ test methods in deltaic silt
Konrad, J M, Bonzak M, Law, K T

Preconsolidation pressure from piezocone tests in marine clays
Konrad, J M, Law, K T
Geotechnique, 1987, vol 37, nr 2, s 177-190

Undrained shear strength from piezocone tests
Konrad, J M, Law, K T
Canadian Geotechnical Journal, 1987, vol 24, nr 3, s 392-405

Ultimate bearing capacity of cones in sand
Kosmoto, T

Three-dimensional analysis of static cone penetration into clay
Kosmoto, T, Kaku, K

CPT's, an excellent aid to determine soil parameters and deviations in the soil profile of the proposed motorway-river crossing near Amsterdam
Krajicek, P V S, Kruizinga, J

Use of cone-penetration tests in geological investigation
Krajicek, P V S, Lang, F D, de

Time-dependent development of strength in dredgings
Krizek, R J, Salem, A M

PAF tests compared with classic tests in Delft soft soil
Kruizinga, J

SPT - CPT correlations
Kruizinga, J

Investigation into accuracy of spatial variation estimation using static cone penetrometer data
Kalatilake, P H S W, Ghosh, A

Cone penetration tests of arctic marine sediments
Kurfurst, P J

Electric cone penetrometer - Development and field results from the Canadian Arctic
Kurfurst, P J, Woeller, D J

Calibration chamber studies of piezocone test in cohesive soils
Kurup, P T, Voyiadjis, G Z, Tumay, M T
ASCE. Journal of Geotechnical Engineering, 1994, vol 120, nr 1, s 81-107
Piezocone tests in sensitive clays in eastern Canada
La Rochelle, P., Zebdi, M., Leroueil, S., Tavenas, F., Virely, D.

Procedure for deairing the pore pressure probe in the laboratory
Lacasse, S.
Norges Geotekniske Institutt. 40015-6, 1980, s 511

In situ characteristics of two norwegian clays
Lacasse, S., Jamoulkovski, M., Lancellotta, R., Lunne, T.

Sensing systems for measuring mechanical properties in ground masses, 3: Vane shear and cone piezometer
Lacasse, S., Ladd, CC., Baligh, MM
US Department of Transportation, Federal Highway Administration. Report; FHWA /RD-81/111, 1982, 153 s

Penetration tests in two Norwegian clays
Lacasse, S., Lunne, T.

Determination of geotechnical parameters of frozen soils by means of the cone penetration test
Ladanyi, B.

Use of the static penetration test in frozen soils
Ladanyi, B.
Canadian Geotechnical Journal, 1976, vol 13, nr 2, s 95-110

Sharp cone testing of creep properties of frozen sand
Ladanyi, B., Sgooula, J.
Canadian Geotechnical Journal, 1992, vol 29, nr 5, s 757-764

Comparaison des essais de penetration effectués avec différents penetromètres statiques ou dynamiques
Lareal, P., Sanglerat, G., Gielly, J.

Cone penetrometer use on uranium mill tailings
Larson, NB., Mitchell, B.
ASCE Geotechnical Special Publication 6, 1986, s 700-713

CPT-sondering. Utsträckning - utförande - utvärdering. En in-situ metod för bestämning av jordlägerföljd och egenskaper i jord
Larsson, R.
Swedish Geotechnical Institute. SGI Information 15, 1992, 80 s

CPT test. Equipment - testing - evaluation. An in situ method for determination of stratigraphy and properties
Larsson, R.
Swedish Geotechnical Institute. SGI Information 15 E, 1995, 80 s

Piezocone test in soft soils
Larsson, R.

Spaltfilter vid CPT-sondering. Resultat av en studie med speciell avseende på spalter fyllda med fett i kombination med vatten i sondens inre hällem
Larsson, R.
Swedish Geotechnical Institute, SGI, Varia 431, 1994, 18 s

Use of new in situ tests in soft soils
Larsson, R.
International conference on soft soil engineering: Recent advances in soft soil engineering, Guangzhou, China, November 8-11, 1993. Proceedings, s 798-803

Evaluation of shear strength in cohesive soils with special reference to Swedish practice and experience
Larsson, R., Bergdahl, U., Eriksson, L.
ASTM Geotechnical Testing Journal, 1987, vol 10, nr 3, s 105-112

Utvärdering av skjuvhallfasthet i kohesionsjord
Larsson, R., Bergdahl, U., Eriksson, L.
Swedish Geotechnical Institute. SGI Information; 3, 1984, 28 s

Kalibrering av kombinerade spetstryck-portrycksonder i laboratorium
Larsson, R., Eskilson, S.
Swedish Geotechnical Institute. SGI Varia; 223, 1988, 28 s

Piezocone tests in clay
Larsson, R., Mulabdic, M.
Swedish Geotechnical Institute. SGI Rapport 42, 1991, 240 s

Nyare in situ metoder för bedömning av lagerföljd och egenskaper i jord
Larsson, R., Sällborg, G.
Swedish Geotechnical Institute. SGI Information; 5, 1987, 64 s
Penetro-gammadensimeter
Ledoux,J.L, Menard,J, Soulard,P

Controle in situ du compactage de remblais sous eau
Leew,EH, de Silence,P

Deformability of rock-like materials using a sharp cone test
Leite,MH, Ladanyi,B, Gill,DE
ASTM. Geotechnical Testing Journal, 1994, vol 17, nr 2, s 195-206

Dynamic compaction of granular soils
Leonards,GA, Cutter,WA, Holtz,RD
ASCE. Geotechnical Engineering Division. Journal, 1980, vol 106, nr GT1, s 35-44

Settlement of shallow foundations on granular soils
Leonards,GA, Frost,JD
ASCE. Journal of Geotechnical Engineering, 1988, vol 114, nr 7, s 791-809

Penetrometre a chute libre: Impact et penetration dans des argiles reconstituees
Levacher,D
Canadian Geotechnical Journal, 1985, vol 22, nr 1, s 129-135

Pore pressures during cone penetration in clays
Levadoux,JN, Baligh,MM
Massachusetts Institute of Technology. Civil Engineering. Publication; R80-15, 1980, 310 s

Scale effects in cone penetration tests
Lima,DC, de Tumay,TD
American Society of Civil Engineers, ASCE. Geotechnical Special Publication 27, 1991, s 38-51

Use of piezocone in the design of a deep basement in London Clay
Long,MM, O’Riordan,NJ

Penetration testing in Belgium
Lousberg,M, Calenbert,L, et al
European symposium on penetration testing, ESOPT, Stockholm, June 1974. Proceedings, Vol. 1, s 7-17

Division S-6-soil and water management and conservation. A portable constant-rate cone penetrometer
Lowery,B

Aspects of penetrometer tests in clay
Lager,HJ, Lekking,PF, Nieuwenhuis,JD

Measuring undrained shear strength using CPT and field vane
Luke,K

Engineering use of Piezocone data in North Sea clays
Lunne,T, Christoffersen,HP, Tjelta,TT

Interpretation of cone penetrometer data of offshore sands
Lunne,T, Christoffersen,HP
Norges Geotekniske Institutt. Publikasjon; 156, 1985, 12 s

Correlations between cone resistance and vane shear strength in some Scandinavian soft to medium stiff clays
Lunne,T, Eide,O, Ruiter,J de
Canadian Geotechnical Journal, 1976, vol 13, nr 4, s 430-441

Laboratory and field evaluation of cone penetrometers
Lunne,T, Eidsmoen,T, Gillespie,D, Howland,J
ASCE Geotechnical Special Publication 6, 1986, s 714-729

Piezocone testing in overconsolidated clays
Lunne,T, Eidsmoen,T, Powell,JM, Quarterman,RST

Role of CPT in North Sea foundation engineering
Lunne,T, Kleven,A
Cone penetration testing and experience, St. Louis, MO, Oct. 1981. Proceedings, s 76-107

SPT, CPT, pressuremeter testing and recent developments on in situ testing, 1-3
Lunne,T, Lacasse,S, Pad,NS, Decourt,L

Use of cone penetrometer tests to compute penetration resistance of steel skirts underneath North Sea gravity platforms
Lunne,T, St John,HD
Interpretation of piezocone results in overconsolidated clays
Lutenegger,AJ, Kabir,MG
Penetration testing in the UK. Geotechnology conference, Birmingham, July 1988. Proceedings, s 147-150

Use of penetration tests to predict wick drain performance in a soft clay
Lutenegger,AJ, Kabir,MG, Saye,SR

Use of in situ tests to predict uplift performance of multihelix anchors
Lutenegger,AJ, Smith,BL, Kabir,MG
ASCE Geotechnical Special Publication 16, 1988, s 93-109

Hydraulic conductivity assessment of slurry wall using piezocone test
Manassero,M
ASCE. Journal of Geotechnical Engineering, 1994, vol 120, nr 10, s 1725-1746

Utilisation du penetrometre statique dans les Basses Torres du Saint- Laurent
Maranda,R, Dion,DJ
Canadian Geotechnical Journal, 1979, vol 16, nr 3, s 591-604

Detection of liquefiable sand layers by means of quasi-static penetration tests
Marchetti,S

Comparison of the results from static and dynamic penetration tests, in situ plate tests and laboratory compressibility tests
Marcu,A, Popescu,M, Abramescu,T, Balacciu,C

Offshore applications of the cone penetrometer
Marr,LS
Cone penetration testing and experience, St. Louis, MO, Oct. 1981. Proceedings, s 456-476

Comparison of the results from static penetration tests and large in-situ plate tests in London clay
Marsland,A

Evaluation of the engineering design parameters for glacial clays
Marsland,A
Quarterly Journal of Engineering Geology, 1977, vol 10, nr 1, s 1-26

Investigation of cone penetration test in British clay carried out by the Building Research Establishment 1960 - 86
Marsland,A, Powell,JM

Factors affecting the measurements and interpretation of quasi static penetration tests in clays
Marsland,A, Quarterman,RS

Concrete pile design in tidewater Virginia
Martin,RE, Selti,L, Powell,GW, Bertolin,M
ASCE. Journal of Geotechnical Engineering, 1987, vol 113, nr 6, s 568-585
CPT and pile tests in granitic residual soils
Martins, FF, Martins, JB
International conference on soil mechanics and foundation engineering, 12, Rio de Janeiro, August 1989. Proceedings, Vol 1, s 529-531

Estimation of in situ lateral stresses by full displacement methods
Masood, T, Kibria, S

Estimation of in situ lateral stresses in soils by cone-penetration test
Masood, T, Mitchell, JK
ASCE. Journal of Geotechnical Engineering, 1993, vol 119, nr 10, s 1624-1639

Acoustic penetration testing
Massarsch, KR
International geotechnical seminar on field instrumentation and in-situ measurements, 4, Singapore, Nov. 1986. Proceedings, s 71-76

Settlement analysis of compacted granular fill
Massarsch, KR

Standard and static cone penetration test profiles for arid soil engineering zones of the United Arab Emirates
Maurenbrecher, PM, Hartevelt, JJA

CPT indexing of in situ OCR in clays
Mayne, PW
ASCE Geotechnical Special Publication 6, 1986, s 780-793

Determination of OCR in clays by piezocone tests using cavity expansion and critical state concepts
Mayne, PW
Soils and Foundations, 1991, vol 31, nr 2, s 65-76

In situ determination of clay stress history by piezocone model
Mayne, PW

Profiling OCR in clays by piezocone soundings
Mayne, PW, Kemper, JB, Jr
ASTM Geotechnical Testing Journal, 1988, vol 11, nr 2, s 139-147

Effective stress method for piezocone evaluation of \(S_u \)
Mayne, PW, Chen, BS

Profiling stress history from piezocone soundings
Mayne, PW, Holtz, RD
Soils and Foundations, 1988, vol 28, nr 1, s 16-28

Profiling OCR in stiff clays by CPT and SPT
Mayne, PW, Kemper, JB, Jr
ASTM Geotechnical Testing Journal, 1988, vol 11, nr 2, s 139-147

Observations on the development of pore-water stresses during piezocone penetration in clays
Mayne, PW, Kullavanijaya, FTH, Kay, JN
Canadian Geotechnical Journal, 1990, vol 27, nr 4, s 418-428

Correlations between shear wave velocity and cone tip resistance in natural clays
Mayne, PW, Rix, GJ
Soils and Foundations, 1995, vol 35, nr 2, s 107-110

Gmax - Qc relationships for clays
Mayne, PW, Rix, GJ
ASTM. Geotechnical Testing Journal, 1993, vol 16, nr 1, s 54-60

Evaluation of a routine design criterion for precast concrete piles driven into low strength soil formations
Mazzucato, A, Soranzo, M

Considerations concerning field tests for the control of the soil compaction requirement in road- and airport construction
Meganck, J
Amici et alumi. Em. Prof. Dr Ir E.E. De Beer, 1982, s 207-216

Cone penetration testing - methods and interpretation
Meigh, AC

Bearing capacity and settlement of pile foundations
Meyerhof, GG
ASCE. Geotechnical Engineering Division. Journal, 1976, vol 102, nr GT3, s 197-228

Bearing capacity and settlement of foundations in sand based on static cone penetration tests
Meyerhof, GG
Amici et alumi. Em. Prof. Dr Ir E.E. De Beer, 1982, s 217-222
LITERATURE ON CONE PENETRATION TESTING

Scale effects of the ultimate bearing capacity of large diameter piles in sand
Meyerhof, GG

Scale effects of ultimate pile capacity
Meyerhof, GG
ASCE. Journal of Geotechnical Engineering, 1983, vol 109, nr 6, s 797-806

Bearing capacity of piles in layered soils
Meyerhof, GG, Valsangkar, AJ

Deformation and strength determination of weak soils through combined field tests
Milevski, DN

Applicability of penetration testing for determining the collapsibility of loess soils
Milevski, DN

Some soil parameters determined by cone penetration tests
Milovic, D, Stevanovic, S

Some design parameters determined by penetration tests
Milovic, D, Todorovic, T
Budapest conference on soil mechanics and foundation engineering, 6, Budapest, Oct. 1984. Proceedings, s 197-204

Field tests of soft saturated soils
Minkov, M, Karachorov, P, Domschev, P, Genov, R
Budapest conference on soil mechanics and foundation engineering, 6, Budapest, Oct., 1984. Proceedings, s 205-211

Ground improvement evaluation by in-situ tests
Mitchell, JK
ASCE Geotechnical Special Publication 6, 1986, s 221-236

New developments in penetration tests and equipment
Mitchell, JK
International symposium on penetration testing, 1, ISOPT-1, Orlando, Mars 1988. Proceedings, Vol. 1, s 245-261

In situ measurement of volume change characteristics. /State-of-the-art review/
Mitchell, JK, Gardner, WS

Static penetration testing on the moon
Mitchell, JK, Houston, WN

Determining sand strength by cone penetrometer
Mitchell, JK, Keaveny, JM
ASCE Geotechnical Special Publication 6, 1986, s 823-839

Cone resistance as measure of sand strength
Mitchell, JK, Lunne, T
ASCE. Geotechnical Engineering Division. Journal, 1978, vol 104, nr GT7, s 995-1012

Time-dependent strength gain in freshly deposited or densified sand
Mitchell, JK, Solymar, ZV
ASCE. Journal of Geotechnical Engineering, 1984, vol 110, nr 11, s 1559-1576

Screw plate and cone penetrometer as a field testing system
Mitchell, PW, Kay, JN

Cone penetration characteristics and its correlation to static and cyclic deformation-strength behaviors of anisotropic sand
Miura, S, Toki, S, Tanizawa, F
Soils and Foundations, 1984, vol 24, nr 2, s 58-74

Time-dependent strength gain in freshly deposited or densified sand
Mitchell, JK, Solymar, ZV
ASCE. Journal of Geotechnical Engineering, 1984, vol 110, nr 11, s 1559-1576

Screw plate and cone penetrometer as a field testing system
Mitchell, PW, Kay, JN

Static penetration results of varved clays
Mlynarek, ZB, Niedzielski, A, Tschuschke, W

Bearing capacity equations of static sounding of plocene clay
Mlynarek, ZB, Sanglevat, G

Relationship between shear parameters and cone resistance for some cohesive soils
Mlynarek, ZB, Sanglevat, G
Accuracy of embankment density assessment by cone penetration test and light dynamic probe
Mlynarek,ZB, Tschuschke,W

Evaluation of soil strength parameters by the CPTU method
Mlynarek,ZB, Tschuschke,W, Sanglerat,G, Tomaszewski,M
Archivum Hydrotechniki / Archive of Hydrotechnics, 1991, vol 38, nr 3/4, s 17-34

Site investigation and in situ testing
Moh,ZC
Geotechnical engineering in Southeast Asia. A Commemorative volume of the Southeast Asian Geotechnical Society, s 9-24

Correlation of CPT and field vane tests for clay tills
Mortensen,JK, Hansen,G, Sorensen,B
Dansk Geoteknisk Forening. DGF Bulletin 7, 1991, 89 s

Generalization of static cone penetration data
Muhovec,I, Kovacic,D

50 years of deep sounding with static penetrometers
Muhs,H
Deutsche Forchungsgesellschaft fur Bodenmechanik. Mitteilungen; 34, 1981, s 45-50

Calibration of piezocones for investigations in soft soils and demands for accuracy of the equipments
Mulabdic,M, Eskilson,S, Larsson,R
Swedish Geotechnical Institute. SGI Varia 270, 1990, 62 s

Cone penetration testing in Japan
Muromachi,T
Cone penetration testing and experience, St. Louis, MO, Oct. 1981. Proceedings, s 49-75

Experimental study on application of static cone penetrometer to subsurface investigation of weak cohesive soils
Muromachi,T

Comparative study of static and dynamic penetration tests currently in use in Japan
Muromachi,T, Kobayashi,S
European symposium on penetration testing, 2, ESOPT, Amsterdam, May 1982. Proceedings, Vol. 1, s 297-302

Penetration testing in Japan
Muromachi,T, Oguro,I, Miyashita,T

Borehole cone apparatus for weak rocks
Muromachi,T, Sakai,Y, Tsuchiya,H, Yamamoto,Y

Development of multi-sensor cone penetrometers
Muromachi,T, Tsuchiya,H, Sakai,Y, Sakai,K

Simple procedure for acceptance testing of freshly prepared solidified waste
Myers,TE
ASTM Special Technical Publication; 886, s 263-272

Site investigation of glacial soils using cone penetration tests
Nash,DFT, Dufjin,MJ
European symposium on penetration testing, 2, ESOPT, Amsterdam, May 1982. Proceedings, Vol. 1, s 303-308

Modulus of elasticity of sandy soils by sounding methods
Natarajan,TK, Tolia,DS

Validity of existing procedures for the interpretation of SPT and CPT results
Natarajan,TK, Tolia,DS
European symposium on penetration testing, 2, ESOPT, Amsterdam, May 1982. Proceedings, Vol. 1, s 113-118

Applications of the CPT and the electrical density probe during the construction of the Eastern Scheldt Storm Surge Barrier
Nelissen,HAM

Theory and practice of a soil hardness tester YH-62
Nakayama,Y
European symposium on penetration testing, 2, ESOPT, Amsterdam, May 1982. Proceedings, Vol. 1, s 303-308
Penetration testing in Italy
Niccolai, C, et al

In-situ testing to monitor deep sand compaction at Belawan port, Indonesia
Nicholls, RA

Development of a nuclear density probe in a cone penetrometer
Nieuwenhuis, JK, Smits, FP

Essais en place dans des couches sablonneuses naturelles
Novosel, T, Lisac, Z, Kvasnicka, P, Tusic, V

Effect of cone angle on penetration resistance
Nowatzki, EA, Karafiath, LL
Highway Research Record; 405, 1972, s 51-59

Development of the cone pressuremeter. Diss
Nutt, NRF
University of Oxford, 1993, /216/ s

Contribution to the calculation of the CPT bearing capacity of pile points
Nuyens, J
European symposium on penetration testing, 2, ESOPT, Amsterdam, May 1982. Proceedings, Vol. 2, s 751-753

Caracteristiques in situ d’un massif alluvionnaire de sables-graviers
Nuyens, J, Huergo, PJ

Kortlaegning af saltforurening ved hjælp af CPT-baseret måleudstyr
Nørgaard, JHP

Reliability of pile capacity assessment by CPT in overconsolidated clay
O’Neill, MW
ASCE Geotechnical Special Publication 6, 1986, s 237-256

Interpretation of static cone penetrometer tests of soft clays of low plasticity
O’Riordan, NJ, Davies, JA, Dauncey, PC

Case history: Use of the cone penetrometer to calculate the settlement of a chemically stabilized landfill
Oakley, RE, III
American Society for Testing and Materials, ASTM. Special Technical Publication. STP 1070, 1990, s 345-357

Promising technique for evaluating liquefaction potential, based on a composite analysis of static and dynamic cone penetration test results
Ohyo, S, Iwasaki, T, Wakamatsu, M
Oyo Technical Report, 7, 1985, s 35-59

In situ measurement by chemoprobe of groundwater from in situ sanitation of versatic acid spill
Olie, JJ, Ree, CCD, van, Brenner, C
Geotechnique, 1992, vol 42, nr 1, s 13-21

Normalization and prediction of geotechnical properties using the cone penetrometer test (CPT). Diss
Olsen, RS
US Army Engineer Waterways Experiment Station. Technical Report GI-94-29, 1994, 292 s

Site characterization using the cone penetrometer test
Olsen, RS, Farr, JV
ASCE Geotechnical Special Publication 6, 1986, s 854-868

Soil classification and site characterization using the cone penetrometer test
Olsen, RS, Malone, PG

Soil improvement evaluation by CPT for tanks
Ozawa, Y, Sunami, S, Kosaka, M
ASCE Geotechnical Special Publication 6, 1986, s 900-912
Penetromètre statique de l'importance du frottement lateral associé à la résistance de pointe
Parez, L
Institut Technique du Batiment et des Travaux Publics.
Annales: Sols et Fondations, 1976, vol 29, nr 340/132, s 46-51

Static penetrometer: The importance of the skin friction associated with the point resistance
Parez, L
European symposium on penetration testing, ESOPT, Stockholm, June 1974. Proceedings,
Vol. 2, s 293-299

Cv, Kh, cU determined by penetration test
Parez, L, Bachelier, M
International conference on soil mechanics and foundation engineering, 10, Stockholm, June 1981. Proceedings,
Vol. 2, s 553-556

Pression interstitielle développée au foncage des penetromètres
Parez, L, Bachelier, M, Sechet, B
European conference on soil mechanics and foundation engineering, 6, Vienna, Austria 1976. Proceedings,
Vol. 1, s 533-538

Calibration of cone penetrometers
Parkin, A.K
International symposium on penetration testing, 1, ISOPT-1, Orlando, March 1988. Proceedings,
Vol. 1, s 221-243

Boundary effects in the laboratory calibration of a cone penetrometer for sand
Parkin, A.K, Lunne, T

Some aspects concerning the study of foundation soils, using cone penetration tests
Paunescu, M, Gruia, A
European symposium on penetration testing, 2, ESOPT, Amsterdam, May 1982. Proceedings, Vol. 1, s 317-322

Laboratory investigation of the penetration resistance of fine cohesionless materials
Peterson, R.W

Méthode pratique de calcul d'un pieu isolé à l'aide du penetromètre statique
Phillipponnat, G
Revue Française de Geotechnique, 1980, nr 10, s 55-64

Experimental investigation of factors affecting penetration resistance in granular soils in centrifuge modelling
Phillips, R., Valsangkar, A.
Cambridge University. Engineering Department. CUED/D-Soils TR; 210, 1987, 17 + 32, s

Vergleichende Untersuchungen beim Einsatz statischer und dynamischer Sonden
Placzek, D
Geotechnik, 1985, vol 8, nr 2, s 68-75

In situ sampling, density measurements, and testing of foundations soils at Duncan Dam
Plewes, H.D., Pillai, T.S., Morgan, M.R., Kilpatrick, B.L.
Canadian Geotechnical Journal, 1994, vol 31, nr 6, s 927-938

Bearing capacity of steel piles by in situ testing
Popovic, M, Sarac, D.Z.
s 369-372

Effect of velocity on penetrometer resistance
Poskitt, T.J., Leonard, C

Interpretation and use of the piezocone test in UK clays
Powell, J.M., Quarterman, R.S.T., Lunne, T

Interpretation of cone penetration tests in clays, with particular reference to rate effects
Powell, J.M., Quarterman, R.S.T.

Use of the electric static cone penetrometer in the determination of the engineering properties of chalk
Power, P.T
European symposium on penetration testing, 2, ESOPT, Amsterdam, May 1982. Proceedings, Vol. 2, s 769-774

Comparison between cone penetration test results and the performance of small diameter instrumented piles in stiff clay
Price, G., Wardle, I.F.
European symposium on penetration testing, 2, ESOPT, Amsterdam, May 1982. Proceedings, Vol. 2, s 775-780
Literature on Cone Penetration Testing

Contribution à l'étude des penetromètres statiques et dynamiques
Puech, A., Cassan, M., Biarez, J., Toutounji, A.

Cone penetration in cemented sands: Bearing capacity interpretation
Puppala, A.J., Acar, Y.B., Semnesset, K.

Direct correlations between piezocone test results and undrained shear strength of clay
Rad, N.S., Lunne, T.
International symposium on penetration testing, 1, ISOPT-1, Orlando, Mars 1988. Proceedings, Vol. 2, s 911-917

Effect of cementation on the cone penetration resistance of sand: A model study
Rad, N.S., Tumay, M.T.
ASTM. Geotechnical Testing Journal, 1986, vol 9, nr 3, s 117-125

Effect of cementation on the cone penetration resistance of sand
Rad, N.S., Tumay, M.T.
ASCE Geotechnical Special Publication 6, 1986, s 926-948

Pore-pressure response of the piezocone penetrometer
Rad, N.S., Tumay, M.T.
ASTM Geotechnical Testing Journal, 1985, vol 8, nr 3, s 125-131

In situ measurements for deep compaction control of dredged sand fill
Radhakrishna, R., Ramaswamy, S.D.

Sensing systems for measuring mechanical properties in ground masses, 4: Static penetrometer
Ramage, J., Williams, S.S., Jr.

Example of use of cone penetration test for soil profiling in a remote area
Ramaswamy, S.D., Aziz, M.A.

Pressuremeter correlations with standard penetration and cone penetration tests
Ramaswamy, S.D., Daulah, I.U., Hasan, Z.
European symposium on penetration testing, 2, ESOPT, Amsterdam, May 1982. Proceedings, Vol. 1, s 137-142

Assessment of in-depth densification of sandfill due to compaction in a reclaimed area by cone penetration resistance
Ramaswamy, S.D., Yong, K.Y.
European symposium on penetration testing, 2, ESOPT, Amsterdam, May 1982. Proceedings, Vol. 1, s 69-72

Example of the use of cone penetration testing in the design of underground structures and temporary works in cohesive soils
Reid, J.M., Turnbull, K.W.

Statistical evaluation of CPT and DMT measurement at the Heber road site
Reyna, F., Chameau, J.L.
American Society of Civil Engineers, ASCE. Geotechnical Special Publication 27, 1991, s 1425

Some mechanical correlations in the Valley of Mexico Clay
Ricor, A., Leont, J.L., Juarez-Badillo, E., Orozco, J.M.

Dual load range cone penetrometer
Rigden, W.J., Thorburn, S., Marsland, A., Quatermain, A.

Experiences with CPT in eastern Naples area
Rippa, F., Vinate, F.
European symposium on penetration testing, 2, ESOPT, Amsterdam, May 1982. Proceedings, Vol. 2, s 797-804

Comparison of some penetration tests with laboratory investigations in cohesive soils
Rizkallah, V.

Example of use of cone penetration test for soil profiling in a remote area
Ramaswamy, S.D., Aziz, M.A.

Pressuremeter correlations with standard penetration and cone penetration tests
Ramaswamy, S.D., Daulah, I.U., Hasan, Z.
European symposium on penetration testing, 2, ESOPT, Amsterdam, May 1982. Proceedings, Vol. 1, s 137-142

Assessment of in-depth densification of sandfill due to compaction in a reclaimed area by cone penetration resistance
Ramaswamy, S.D., Yong, K.Y.
European symposium on penetration testing, 2, ESOPT, Amsterdam, May 1982. Proceedings, Vol. 1, s 69-72

Example of the use of cone penetration testing in the design of underground structures and temporary works in cohesive soils
Reid, J.M., Turnbull, K.W.

Statistical evaluation of CPT and DMT measurement at the Heber road site
Reyna, F., Chameau, J.L.
American Society of Civil Engineers, ASCE. Geotechnical Special Publication 27, 1991, s 1425

Some mechanical correlations in the Valley of Mexico Clay
Ricor, A., Leont, J.L., Juarez-Badillo, E., Orozco, J.M.

Dual load range cone penetrometer
Rigden, W.J., Thorburn, S., Marsland, A., Quatermain, A.

Experiences with CPT in eastern Naples area
Rippa, F., Vinate, F.
European symposium on penetration testing, 2, ESOPT, Amsterdam, May 1982. Proceedings, Vol. 2, s 797-804

Comparison of some penetration tests with laboratory investigations in cohesive soils
Rizkallah, V.
Comparison between the results of penetration tests with the static penetrometer and the heavy dynamic penetrometer
Rizkallah, V, Kramer, H, Maschwitz, G

Estimation of foundation settlements in sand from CPT
Robertson, PK
American Society of Civil Engineers, ASCE. Geotechnical Special Publication 27, 1991, s 764-775

In situ testing and its application to foundation engineering
Robertson, PK
Canadian Geotechnical Journal, 1986, vol 23, nr 4, s 573-594

In-situ stress determination in sands using penetration devices
Robertson, PK
British Columbia University. Civil Engineering. Soil Mechanics Series; 99, 1986, 22 s

Soil classification using the cone penetration test
Robertson, PK
Canadian Geotechnical Journal, 1990, vol 27, nr 1, s 151-158

Guidelines for use and interpretation of the electronic cone penetration test
Robertson, PK, Campanella, RG
Hogentogler & Company Inc, 1986, 3 ed, 196 s

Guidelines for use and interpretation of the electronic cone penetration test
Robertson, PK, Campanella, RG
Hogentogler & Company Inc, 1986, 3 ed, 196 s

Interpretation of cone penetration tests, 1: Sand
Robertson, PK, Campanella, RG
Canadian Geotechnical Journal, 1983, vol 20, nr 4, s 718-733

Interpretation of cone penetration tests, 2: Clay
Robertson, PK, Campanella, RG
Canadian Geotechnical Journal, 1983, vol 20, nr 4, s 734-745

In-situ tests to assess liquefaction resistance
Robertson, PK, Campanella, RG
British Columbia University. Civil Engineering. Soil Mechanics Series; 45, 1981, 13 + 771 s

Liquefaction potential of sands using the CPT
Robertson, PK, Campanella, RG
ASCE. Journal of Geotechnical Engineering, 1985, vol 111, nr 3, s 384-403

Design of axially and laterally loaded piles using in-situ tests: A case history
Robertson, PK, Campanella, RG, Brown, PT, Grof, I, Hughes, JMO

Prediction of wick drain and preload performance using piezometer cone data
Robertson, PK, Campanella, RG, Brown, PT, Robinson, KE
In situ testing and field behaviour. Canadian geotechnical conference, 39, Ottawa, Aug, 1986. Preprint volume, s 399-404

Axial capacity of driven piles in deltaic soils using CPT
Robertson, PK, Campanella, RG, Davies, MP, Sy, A
American Society of Civil Engineers, ASCE. Geotechnical Special Publication 27, 1991, s 764-775

Evaluation of pile design in Fraser River delta using in-situ tests
Robertson, PK, Campanella, RG, Davies, MP, Sy, A
International symposium on penetration testing, 1, ISOPT-1, Orlando, Mars 1988. Proceedings, Vol. 2, s 919-928

Seismic CPT to measure in situ shear wave velocity
Robertson, PK, Campanella, RG, Gillespie, D, Rice, A
ASCE. Journal of Geotechnical Engineering, 1986, vol 112, nr 8, s 791-803

Use of piezometer cone data
Robertson, PK, Campanella, RG, Gillespie, D, Greig, JW
ASCE. Journal of Geotechnical Engineering, 1986, vol 112, nr 8, s 791-803

SPT-CPT correlations
Robertson, PK, Campanella, RG, Wightman, A
British Columbia University. Civil Engineering. Soil Mechanics Series; 62, 1982, 17 s

Estimating coefficient of consolidation from piezocene tests
Robertson, PK, Sully, JP, Woeller, DJ, Lunne, T, Powell, JM, Gillespie, D
Canadian Geotechnical Journal, 1992, vol 29, nr 4, s 539-550

Seismic cone penetration test for evaluating liquefaction potential under cyclic loading
Robertson, PK, Woeller, DJ, Finn, WDL
Canadian Geotechnical Journal, 1992, vol 29, nr 4, s 686-695

Evaluation of excess pore pressures and drainage conditions around driven piles using the cone penetration test with pore pressure measurements
Robertson, PK, Woeller, DJ, Gillespie, D
Canadian Geotechnical Journal, 1990, vol 27, nr 2, s 249-254
Influence of excess pore pressure on cone measurements
Rocha Filho, P

Penetration testing in United Kingdom
Rodin, S, Corbett, B.O, Sherwood, D.E, Thorburn, S
European symposium on penetration testing, ESOPT, Stockholm, June 1974. Proceedings, Vol. 1, s 139-146

Correlation of cone index with soil properties
Rohani, B, Baladi, GY
Cone penetration testing and experience, St. Louis, MO, Oct. 1981. Proceedings, s 128-144

Comparative study on cone resistance measured with three types of CPT tips
Rol, A.H

Bestimmung des Bettungsmoduls horizontal belasteter Pfähle aus Sondierungen
Rollberg, D
Bauingenieur, 1982, vol 57, nr 9, s 343-349

Determination of the bearing capacity and pile driving resistance of piles using soundings. Diss
Rollberg, D
Aachen TH Institut für Grundbau, Bodenmechanik, Felsmechanik und Verkehrswasserbau. Veröffentlichungen; 3, 1977, s 43-227

Nachrechnung neuerer Pfahlversuche anhand von Sondierungen
Rollberg, D
Bauingenieur, 1980, vol 55, nr 9, s 345-350

Some CPT applications for foundation and landslide studies in Southern California
Romani, F, Beard, R.M, Mooney, P.E

Monorail piers on shallow foundations, settlement analysis based on Dutch cone data
Roth, W.H, Swantko, T.D, Pail, U.K, Berry, S.V
European symposium on penetration testing, 2, ESOPT, Amsterdam, May 1982. Proceedings, Vol. 2, s 821-826

Interpretation of static cone penetration tests in sensitive clays
Roy, M, Michaud, D, Tavenas, F, Leroueil, S, La Rochelle, P

Capacite portante de pieux isoles dans les argiles sensibles: etude de cas par la methode penetrometrique
Roy, M, Tanguay, L
Canadian Geotechnical Journal, 1989, vol 26, nr 3, s 375-384

Development of a quasi-static piezocone apparatus
Roy, M, Tremblay, M, Tavenas, F, La Rochelle, P
Canadian Geotechnical Journal, 1982, vol 19, nr 2, s 180-188

Development of pore pressures in quasi-static penetration tests in sensitive clay
Roy, M, Tremblay, M, Tavenas, F, La Rochelle, P
Canadian Geotechnical Journal, 1982, vol 19, nr 2, s 124-138

Current penetrometer practice
Ruiter, J, de
Cone penetration testing and experience, St. Louis, MO, Oct. 1981. Proceedings, s 1-48

Static cone penetration test. State-of-the-art-report
Ruiter, J, de

Elastic-plastic incompressible flow around an infinite cone
Sagaseta, C, Houlsby, G.T
International symposium on penetration testing, 1, ISOPT-1, Orlando, Mars 1988. Proceedings, Vol. 2, s 933-938

Use of in situ test for foundation design in Bangkok clay
Sambhandharaksa, S, Phanvan, P, Wanichkorakit, B

Strength and deformation properties of fine grained soils obtained from piezocone tests. Diss
Sandven, R
Theoretical and practical aspects of finding coefficients of consolidation from CPTU
Sandven, R
Calibration of in situ test in laboratory and field, Seminar at NGI, Oslo, Jan. 1988, Session 2: 13 + 17/1 s

Trykksondering med poretrykksmaling - en nyttig metode for grunnforholdsbestemmelser
Sandven, R, Janbu, N, Westerlund, GJ

Interpretation of piezocone tests in cohesive soils
Sandven, R, Senneset, K, Janbu, N

Penetration testing in France
Sanglerat, G

Classification directe des sols a l'aide du penetrometre statique avec manchon de mesure de frottement lateral
Sanglerat, G, Andina, R, Tran vo Ninh, Sejourne, M

Controle in situ des previsions de tassements basees sur les essais de penetration statique pour 79 ouvrages sur 17 sites differents
Sanglerat, G, Girousse, L, Bardot, F

Settlement predictions of buildings based on static penetrometer data
Sanglerat, G, Girousse, L, Bardot, F
Proceedings of the Fifth southeast Asian conference on soil engineering, Bangkok, July 1977, s 27-40

Statistical analysis of certain factors influencing cone resistance during static sounding of cohesive soils
Sanglerat, G, Mlynnarck, ZB, Sanglerat, TRA

Problemes pratiques de mecanique des sols et de fondations, t. Generalites, Plasticite, Calcul des tassements, Interpretation des essais in situ
Sanglerat, G, Olivari, G, Cambou, B
(Dunod), 1980, 326 s

Use of a static penetrometer in a softground tunnel
Santoyo, E

Penetration test for determination of characteristics of flood dike materials
Saric, DZ, Popovic, M
European symposium on penetration testing, 2, ESOPT, Amsterdam, May 1982. Proceedings, Vol. 1, s 147-152

In-situ soil test and their interpretation
Sargunan, A, Boominathan, S

Penetration test for determination of characteristics of flood dike materials
Saric, DZ, Popovic, M
European symposium on penetration testing, 2, ESOPT, Amsterdam, May 1982. Proceedings, Vol. 1, s 147-152

Method for determining shear strength of peat by in situ tests
Sasaki, H, Noto, S
National Research Council of Canada. Associate Committee on Geotechnical Research. Technical Memorandum; 127, 1980, s 2-21

Cone penetration testing in snow
Schaap, LHI, Folin, PMB
Canadian Geotechnical Journal, 1987, vol 24, nr 3, s 335-341

Versatile measuring system for electric cone penetration testing
Schaap, LHI, Hoogendoorn, HG

Mechanical and electrical aspects of the electric cone penetrometer tip
Schaap, LHI, Zuidberg, HD

Penetration pore pressure effects on quasi-static cone bearing, qc
Schmertmann, JH

Guidelines for cone penetration test performance and design
Schmertmann, JH

Measurement of in situ shear strength. /State-of-the-art review/
Schmertmann, JH

Penetration testing in USA
Schmertmann, JH
Static cone penetrometers for soil exploration
Schmertmann, JH
SFM Tekniska Notiser, 1968, nr 3, s 11-14

Static cone to compute static settlement over sand
Schmertmann, JH

CPT / DMT QC of ground modification at a power plant
Schmertmann, JH, Baker, W, Gupta, R, Kessler, K
ASCE Geotechnical Special Publication 6, 1986, s 985-1001

Relating cone and pressuremeter tests to assess properties and stresses in sand
Schnaid, F

Assessment of chamber size effects in the calibration of in situ tests in sand
Schnaid, F, Houlsby, GT

Measurement of the properties of sand by the cone pressuremeter test
Schnaid, F, Houlsby, GT

New method for deep static cone penetration testing
Schokking, F, Hoogendoorn, R, Graaf, H C, van de

Examples of evaluating the results from sounding tests
Schulte, E
European symposium on penetration testing, ESOPT, Stockholm, June 1974. Proceedings, Vol 2:2, s 353-359

Pressuremeter, penetrometer and oedometer tests
Schulte, E, Biedermann, B
International conference on soil mechanics and foundation engineering, 9, Tokyo, July 1977 Proceedings, Vol. 1, s 271-276

Use of SPT and CPT tests for evaluating the liquefaction resistance of sands
Seed, H B, Alba, P, de
ASCE Geotechnical Special Publication 6, 1986, s 281-302

CPT - Geoteknikerns "Sound of Music"
Sellgren, E
Väg- och Vattenbyggen, 1986, nr 3, s 13-17

Utförande och tolkning av CPT sondering
Sellgren, E
Utförande och användning av nya åtskillestekniksmetoder. Fältkommitténs temadag 1999, Stockholm - Åbo, 6 september 1990, 14 s

Penetration testing in Norway
Senneset, K
European symposium on penetration testing, ESOPT, Stockholm, June 1974. Proceedings, Vol. 1, s 85-95

Shear strength parameters obtained from static cone penetration tests
Senneset, K, Janbu, N
ASTM, Special Technical Publication; STP 883, 1985, s 41-54

Strength and deformation parameters from cone penetration tests
Senneset, K, Sandven, R, Janbu, N

Evaluation of soil parameters from piezocone tests
Senneset, K, Sandven, R, Janbu, N
Norges Tekniske Høgskole. Geoteknikk, 1989, 34 s

Evaluation of soil parameters from piezocone tests
Senneset, K, Sandven, R, Janbu, N
Transportation Research Record 1235, 1989, s 24-37

Piezocone tests in silty soils
Senneset, K, Sandven, R, Lunne, T, By, T, Amundsen, T

Tolking av trykksondering med poretrykksmåling
Senneset, K, Sandven, R
Nordiske geoteknikermøte, NGM-88, 10, Oslo, Mai 1988. Artikler og "poster"-sammendrag, s 92-98

Static pile capacity based on penetrometer tests in cohesionless soils
Sharma, H D
International symposium on penetration testing, 1, ISOPT-1, Orlando, Mars 1988. Proceedings, Vol. 1, s 369-374

Use of ri-cone penetrometer in foundation engineering
Shibata, T, Mimura, M, Shrivastava, A K

Design aspects of neutron moisture cone penetrometer
Shibata, T, Mimura, M, Shrivastava, A K, Nobuyama, M
Moisture measurement by neutron moisture cone penetrometer: Design and application
Shibata, T, Mimura, M, Shrivastava, AK, Nobuyama, M

Evaluation of liquefaction potentials of soils using cone penetration tests
Shibata, T, Teparaksa, W
Soils and Foundations, 1988, vol 28, nr 2, s 49-60

Should ASTM adopt the European standard CPT?
Shields, DH
Cone penetration testing and experience, St. Louis, MO, Oct. 1981. Proceedings, s 383-393

Coefficient of consolidation from piezcone dissipation tests in very soft clay
Sills, GC, Almeida, MSS, Danziger, FAB
International symposium on penetration testing, 1, ISOPT-1, Orlando, Mars 1988. Proceedings, Vol. 2, s 967-974

Piezcone measurements with four pore pressure positions
Sills, GC, May, RE, Henderson, T, Nyirenda, Z

Flow field around a cylindrical pile during steady penetration
Silvestri, V, Tabib, C
Canadian Geotechnical Journal, 1993, vol 30, nr 2, s 369-376

Interpretation of pore pressure measurements from advanced cone penetration testing
Skomedal, E, Bayne, IM

Problems with interpretation of sand state from cone penetration test
Sladen, JA
Geotechnique, 1989, vol 34, nr 2, s 323-332

Cone penetrometer for foundation design investigations. Final report
Smith, PD
New York State Department of Transportation. Engineering Research and Development Bureau. Report NYSDOT-ERD-75-RR-33, 1975, 29 s

Cone penetration tests in dry sand
Smits, FP

Penetration pore pressure measured with piezometer cones
Smits, FP

Hocus experiment: Investigation of hole closure behind free falling penetrators
Smits, FP, Buzzi, D
International symposium on penetration testing, 1, ISOPT-1, Orlando, March 1988. Proceedings, Vol. 2, s 975-984

Cone penetrometer tests and HydroPunch sampling: a screening technique for plume definition
Smolley, M, Kappmeyer, JC

Compaction of alluvial sands by deep blasting
Solymar, ZV
Canadian Geotechnical Journal, 1984, vol 21, nr 2, s 305-321

Comparison between in-situ test results
Solymar, ZV, Reed, DJ
ASCE Geotechnical Special Publication 6, 1986, s 1236-1248

Instrument for in situ testing of static penetration of large diameter in boreholes
Sopena, LM
International conference on soil mechanics and foundation engineering, 12, Rio de Janeiro, August 1989. Proceedings, Vol 1, s 323-326

Undrained shear strength from cone penetration tests
Stark, TD, Juhrend, JE

Correlations of unconsolidated-undrained triaxial tests and cone penetration tests
Stark, TD, Delashaw, JE
Transportation Research Record 1278, 1990, s 96-102

Strength evaluation of a natural sand
Steensens-Bach, JO

Penetration testing in Bulgaria
Stefanoff, G, Belkoff, M

T-bar penetration testing in soft clay
Stewart, DP, Randolphi, MF
ASCE. Journal of Geotechnical Engineering, 1994, vol 120, nr 12, s 2230-2235

In situ measurement of damping soils
Stewart, WP, Campanella, RG
British Columbia University. Civil Engineering. Soil Mechanics Series 144, 1990, s 36-45
Practical aspects of in situ measurements of material damping with the seismic cone penetration test
Stewart, WP, Campanella, RG
Canadian Geotechnical Journal, 1993, vol 30, nr 2, s 211-219

Statistical evaluation of simple rheological CPT data
Stroia, F, Culita, C

Use of piezometric cone penetration testing and penetrometer groundwater sampling for volatile organic contaminant plume detection
Struyinsky, A.I., Ellyn, G, Sainey, T J
Petroleum, hydrocarbons and organic chemicals in ground water: prevention, detection, and restoration, Houston, TX, Oct. / Nov. 1990. A conference and exposition. Proceedings, s 71-84

Empirical correlation of liquefaction potential using CPT
Sugawara, N
International conference on soil mechanics and foundation engineering, 12, Rio de Janeiro, August 1989. Proceedings, Vol 1, s 335-338

On the possibility of estimating in situ OCR using piezocone (CUCT)
Sugawara, N
International symposium on penetration testing, 1, ISOPT-1, Orlando, Mars 1988. Proceedings, Vol. 2, s 985-991

On estimating of ' for normally consolidated mine tailings by using the pore pressure cone penetrometer
Sugawara, N, Chikaraishi, M

North Sea foundation investigation techniques
Sullivan, RA
Marine Geotechnology, 1980, vol 4, nr 1, s 1-30

Use of full-displacement penetration tests to determine in situ lateral stress
Sully, JP

Effect of lateral stress on CPT penetration pore pressures
Sully, JP, Campanella, RG

Evaluation of field CPTU dissipation data in overconsolidated fine-grained soils
Sully, JP, Campanella, RG

Measurement of lateral stress in cohesive soils by full-displacement in situ test methods
Sully, JP, Campanella, RG
Transportation Research Record 1278, 1990, s 164-171

Interpretation of penetration pore pressures to evaluate stress history in clays
Sully, JP, Campanella, RG, Robertson, PK
International symposium on penetration testing, 1, ISOPT-1, Orlando, Mars 1988. Proceedings, Vol. 2, s 993-999

Overconsolidation ratio of clays from penetration pore pressures
Sully, JP, Campanella, RG, Robertson, PK
ASCE. Journal of Geotechnical Engineering, 1988, vol 114, nr 2, s 209-216

In situ density measurement with nuclear cone penetrometer
Sully, JP, Echeverria, EJ

Quasi-static penetration testing
Sutcliffe, G, Waterton, C
In-situ testing for geotechnical investigations. Extension course, Sydney, May-June 1983. Proceedings, s 33-48

Developments in cone penetration testing - the friction piezocone
Swain, CW
Ground Engineering, 1984, vol 17, nr 2, s 26-27

Design of a large calibration chamber
Sweeney, BP, Clough, GW
ASTM Geotechnical Testing Journal, 1990, vol 13, nr 1, s 36-44

Determination of soil deformation characteristics based on in-situ soil mechanical investigations
Szandtner, G
Geotomography in site investigation: Simulation study
Tallin, AG, Santamarina, C
ASTM. Geotechnical Testing Journal 1990, vol 13, nr 2, s 129-133

Cone penetration tests (CPT) on clay silt
Tammirinne, M, Leinonen, V

Piezocone tests in a soft clay deposit
Tanaka, A, Diniz, AM

Piezocone testing in underconsolidated clay
Tanaka, Y, Szkogami, T
Canadian Geotechnical Journal, 1989, vol 26, nr 4, s 563-567

Pile capacity in stiff clays - CPT method
Tand, KE, Funegard, EG

Bearing capacity of footings on clay CPT method
Tand, KE, Funegard, EG, Briand, JL
ASCE Geotechnical Special Publication 6, 1986, s 1917-1033

Variations of the subsoil before and after piling measured by piezocone penetration test
Tang Shi-dong, Zhu Xiao-lin

Development of centrifuge cone penetration test to evaluate the undrained shear strength profile of a model clay bed
Tani, K, Craig, WH

Penetration testing in Greece
Tassios, TP, Anagnostopoulos, AG

Clay behaviour and the selection of design parameters
Tavenas, F, Leroueil, S

Piezocone test in clays: Use and limitations
Tavenas, F, Leroueil, S, Roy, M

Influence of the rate of penetration on the cone resistance ‘qc’ in sand
Te Kamp, W

Beitrag zur mittelbaren Bestimmung des Steifemoduls aus Sondierungen in nichtbindigen Böden
Teferra, A
Bautechnik, 1976, vol 53, nr 9, s 306-311

Bestimmung der Lagerungsdichte aus Sondierungen
Teferra, A
Bauingenieur, 1976, vol 51, nr 9, s 329-331

Beziehungen zwischen Reibungswinkel, Lagerungsdichte und Sondierwiderständen nichtbindiger Böden mit verschiedener Kornverteilung
Teferra, A
Aachen Technische Hochschule. Forschungsberichte aus Bodenmechanik und Grundbau nr FBG 1, 1975, 219 s

Estimation of the angle of internal friction of non-cohesive soils from sounding tests
Teferra, A
Indian Geotechnical Journal, 1983, vol 13, nr 4, s 211-221

Analytical study of the cone penetration test. Diss
Teh, C I
Oxford University, 1987, 200 s

Analysis of the cone penetration test by the strain path method
Teh, C I, Houlaby, G T

Analytical study of the cone penetration test in clay
Teh, C I, Houlaby, G T
Geotechnique, 1991, vol 41, nr 1, s 17-34

Application of in situ tests for evaluation of pile bearing capacity
Tejchman, A, Gwizdala, K, Klos, J
Determination of load-settlement curve for large diameter piles based on CPT results
Tejchman,A, Gwizdala,K
International symposium on penetration testing, 1, ISOPT-1, Orlando, Mars 1988. Proceedings, Vol. 2, s 1015-1020

Performance of a four-storey building founded on late glacial clays compared with CPT predictions
Thorburn,S

Static penetration test and the ultimate resistances of driven piles in fine-grained non-cohesive soils
Thorburn,S
Structural Engineer, 1976, vol 54, nr 6, s 205-211

Importance of the stress histories of cohesive soils and the cone penetration test
Thorburn,S, Laird,CL, Reid, WM
Structural Engineer, 1981, vol 59A, nr 3, s 87-92

In situ density measurements by nuclear backscatter for an offshore soil investigation
Tjelta,TI, Tieges,AWW, Smits,FP, Geise,JM, Lunne,T
Norges Geotekniske Institutt Publikasjon; 169, 1987, 5 s

Penetration tests for dynamic problems
Tokimatsu,K

Interpretation of static cone penetration tests
Tolia,DS
Indian Geotechnical Journal, 1978, vol 8, nr 3, s 152-168

Pile foundations in soft soils
Tong,IX, Chen,CHF, Chen,XL

Use of the conductivity probe to evaluate groundwater contamination
Tonks,DM, Hunt,SD, Bayne,JM
Ground Engineering, 1993, vol 26, nr 9, s 24-29

Combined pore pressure and point resistance probe
Torstensson,BA

Komplexer portrøys- og spetskraftsond. Ett nytt instrument för sondering av jordlager
Torstensson,BA
Byggdok. Slutrapport; 791444-1, 1981, 42 s

Pore pressure probe
Torstensson,BA
Fjellsprengningsstfektinikk/Bergmekanikk/Gtoteknikk 1977. Foredrag fra Fjellsprengningskonferansen, Bergmekanikkdagen og Geoteknikkdagen, Oslo, nov. 1977, s 34.1-34.15

Pore pressure sounding instrument
Torstensson,BA
Conference on in situ measurement of soil properties, North Carolina State University, Raleigh, NC 1975. Proceedings, Vol. 2, s 48-54

Cone penetration testing in stiff glacial soils using a downhole cone penetrometer
Treen,CR, Robertson,PK, Woeller,DJ
Canadian Geotechnical Journal, 1992, vol 29, nr 3, s 448-455

Static cone penetration test as lithology identifier
Trenter,NA, Miller,C

Development of and experiences from light-weight, portable penetrometer able to combine dynamic and static cone tests
Triggs,JP, Liang,RYK
International symposium on penetration testing, 1, ISOPT-1, Orlando, Mars 1988. Proceedings, Vol. 1, s 467-473

Acoustic cone penetrometer for site investigations
Tringale,PT, Mitchell,JK

Penetration testing in USSR
Trofimenkov,YG

Accuracy of determining the bearing capacity of piles based on results of static penetration sounding of soils
Trofimenkov,YG
Osnovaniya Fundamenty i Mekhanika Gruntov, 1969, vol 4, s 16-17

Soil classification method using all three components of CPTU data
Tsuchiya,H, Muramachi,T, Sakai,Y, Iwasaki,K
International symposium on penetration testing, 1, ISOPT-1, Orlando, Mars 1988. Proceedings, Vol. 2, s 1021-1026

Uplift capacity of pile foundations using CPT data
Tucker,KD
ASCE Geotechnical Special Publication 6, 1986, s 1077-1093

Analysis of the pile load test program at the Lock and Dam 26 replacement project
Tucker,LM, Briaud,JK
US Army Engineer Waterways Experiment Station. Miscellaneous Paper Gr-88-11, 1988, 63 s

Soil exploration in soft clays with the quasi-static electric cone penetrometer
Tunay,MX, Acar,YB, Deseze,E, Yilmaz,R
Subsurface investigations with piezo-cone penetrometer
Tunay,M.T., Boggess,R.L., Acar,Y.B
Cone penetration testing and experience, St. Louis, MO, Oct. 1981. Proceedings, s 325-342

Pile capacity in soft clays using electric QCPT data
Tunay,M.T., Fakhroo,M
Cone penetration testing and experience, St. Louis, MO, Oct. 1981. Proceedings, s 434-455

Relation between cone penetration and static loading of piles in locally strongly varying sand layers
Viergever,M.A

Acoustic emissions generated during the quasi-static cone penetration of soils
Villet,W.C.B., Mitchell,J.K., Tringale,P.T
ASTM Special Technical Publication 1981, nr 750, s 174-193

Cone resistance, relative density and friction angle
Villet,W.C.B., Mitchell,J.K
Cone penetration testing and experience, St. Louis, MO, Oct. 1981. Proceedings, s 178-208

Electrical penetrometer a historical account of its development
Vlasblom,A
LGM-Mededelingen, 92, 1985, 51 s

Practical use of the CPT in soil profiling
Vos,J,.de

Undrained shear strength of saturated clay
Wahls,H.E
Transportation Research Record, 1983, nr 919, s 5-9

Sensing systems for measuring mechanical properties in ground masses, 5: Dutch cone penetrometer tests - case histories
Waitkus,R.A., Burgin,C.R., Smith,R.E

Piezocone tests in a china clay tailings dam
Wakeling,T.R.M

Correlation between the results of static or dynamic probing and pressuremeter tests
Wambeke,A., van, D'Hotel, J.
Some experiences with an electrical static penetrometer
Wang, C
International Association of Engineering Geology. Bulletin 1978, nr 18, s 153-156

On the standardization of the SPT and cone penetration test
Wang, ZQ, Lu, WX
European symposium on penetration testing, 2, ESOPT, Amsterdam, May 1982. Proceedings, Vol. 1, s 175-182

Interpretation of CPT data for design of earth dams near Tehachapi, California
Ward, WA
ASCE Geotechnical Special Publication 6, 1986, s 1119-1133

Bearing capacity of piles influenced by building stages
Webb, D, Everts, AJ, Booer, F, de Brons, KF

Penetration testing in South Africa
Webb, DL

Comparison of the methods of determining settlements in estuarine sands from Dutch cone penetration tests
Webb, DL, Mival, KN, Allinson, AJ
European symposium on penetration testing, 2, ESOPT, Amsterdam, May 1982. Proceedings, Vol. 2, s 945-950

Predicting pile capacities using Dutch cone penetrometer data
Webb, JD
Transportation Research Record nr 616, 1976, s 92-94

Prediction of the load-settlement behaviour of steel H-piles from the results of CPT tests
Weber, L, Beer, EE de

Force Projection Site Evaluation using the electric cone penetrometer (ECP) and the dynamic cone penetrometer (DCP)
Webster, SL, Brown, RW, Porter, JR

Arkansas bridge foundations: field procedures
Welch, RC, Thornton, ST
Arkansas University, Civil Engineering Department. FHWA- RD-78-80770, 1978, 134 s + 3715/511

In situ testing for ground modification techniques
Welch, JP
ASCE Geotechnical Special Publication 6, 1986, s 322-335

Effects of installation disturbance on interpretation of in situ tests in clay
Whittle, AJ, Aubeny, CP

Interpretation of in situ testing of cohesive soils using rational methods
Whittle, AJ, Aubeny, CP, Rafalovich, A, Ladd, CC, Baligh, MD
Massachusetts Institute of Technology. Civil Engineering, 1990, 228 s

Relating cone resistance and pressuremeter test results
Wieringen, JBM, van

Finite element analysis of cone penetration
Wilson, SM, Smith, DM
Penetration testing in the UK. Geotechnology conference, Birmingham, July 1988. Proceedings, s 157-159

In situ measurement of the properties of stiff clays
Wind, D, Wroth, CP

Piezometer probe
Wissa, AEZ, Martin, RT, Garlanger, JE
Specialty conference on in situ measurement of soil properties, Raleigh, NC, June 1975. Proceedings, Vol. 1, s 536-545

Performance and analysis of cone pressuremeter tests in sand
Wither, NJ, Howie, JA, Hughes, JMO, Robertson, PK
Geotechnique, 1989, vol 39, kr 3, s 433-454

Correlations of penetration test results with in-situ and laboratory test data
Witham, JL, Siller, TJ, Bort, RM, Eggemenger, AJ, Christiano, PP, Daval, U

Penetration testing for groundwater contaminants
Woehler, DJ, Weemesser, I, Kokan, MJ, Jolly, G, Robertson, PK
American Society of Civil Engineers, ASCE. Geotechnical Special Publication 27, 1991, s 76-87

Penetration testing in Poland
Wolski, W

Correlation between cone penetration resistance, static and dynamic pile response in clays
Wright, ND, Hooydonk, WR, van, Pluimaag, DJMH
Penetration testing - A more rigorous approach to interpretation
Wroth, CP
International symposium on penetration testing, 1, ISOPT-1, Orlando, March 1988. Proceedings, Vol. 1, s 303-311

Uncertainties in evaluation of strength of marine sand
Wu, TH, Lee, IM, Potter, JC, Kjekstad, O
ASCE. Journal of Geotechnical Engineering 1987, vol 113, nr 7, s 719-738

Development of a penetrometer capable of applying pore pressure
Yagi, N, Enoki, M, Yatabe, R

Use of cone penetrometer testing to investigate sand fill subsidence beneath highways
Yilmaz, R, Horsnell, MR
ASCE Geotechnical Special Publication 6, 1986, s 1178-1188

Cone penetration of granular and cohesive soils
Yong, RN, Chen, CK
ASCE. Engineering Mechanics Division. Journal, 1976, vol 102, nr Em2, s 345-363

Plate loading and vane-cone test measurements for fresh and sintered snow
Yong, RN, Muro, T
McGill University. Geotechnical Research Centre. Soil Mechanics Series; 43, 1980, 32 s

Vane-cone measurements for assessment of tractive performance in wheel-soil interaction
Yong, RN, Yousef, AFA, Fattah, EA
McGill University. Soil Mechanics Series nr 34, 1975, 20 s

Vane cone: a new device for soil shear strength measurement
Yousef, AFA
ASTM Geotechnical Testing Journal, 1989, vol 12, nr 1, s 60-68

Effective stress interpretation of in-situ tests
Yudhbir, Prakasa Rao, AVSN
ASCE Geotechnical Special Publication 6, 1986, s 1189-1200

Water content - cone penetration behaviour of fine grained soils
Yudhbir, Shukla, R

Design parameters for shallow foundations on alluvium
Yudhbir, Srivastava, NK, Jain, JC, Jain, CK

Use of static penetration and pocket penetrometer in China
Zeng, GX

Experiences and relationships from penetration testing in Greece
Zervogiannis, CS, Kalteziotis, NA

Analysis of PLT and CPT by oedo-triaxial model
Zhang, GX, Zhang, NR, Zhang, FL

Prediction of limit load of driven pile by CPT
Zhou, J, Xie, Y, Zuo, ZS, Luo, MY, Tang, XJ

Influence of fines on evaluating liquefaction of sand by CPT
Zhou, SG
International conference on recent advances in geotechnical earthquake engineering and soil dynamics, St. Louis, MO, April-May, 1981. Vol. 1, s 167-172

Fast, economical, cone testing of river sediments
Zimmie, TF, Cordon, CR
ASCE Geotechnical Special Publication 6, 1986, s 1201-1217
Cone Pressuremeter: An efficient way of pressuremeter testing
Zuidberg, H.M., Post, M.L.

Penetrometer for simultaneously measuring of cone resistance, sleeve friction and dynamic pore pressure
Zuidberg, H.M., Schaap, L.H.J., Beringen, F.L.

Comparison of downhole and seabed cone penetration tests for offshore foundation studies
Zwaag, G.L., van der, Sunderland, G.R.
European symposium on penetration testing, 2, ESOPT, Amsterdam, May 1982. Proceedings,
LITERATURE ON Cone Penetration Testing

Author Index

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aas,G 5</td>
<td>Baladi,G 6, 7, 21</td>
</tr>
<tr>
<td>Abdrambo,FM 5</td>
<td>Baldi,G 6, 7, 21</td>
</tr>
<tr>
<td>Abramsco,T 26</td>
<td>Baligh,MM 6, 7, 24, 25, 42</td>
</tr>
<tr>
<td>Acar,YB 5, 32, 40, 41</td>
<td>Balogun,LA 5</td>
</tr>
<tr>
<td>Ajayi,LA 5</td>
<td>Bardot,F 35</td>
</tr>
<tr>
<td>Ajdic,I 17</td>
<td>Barreiro,D 14</td>
</tr>
<tr>
<td>Akili,W 5</td>
<td>Bassett,RH 13</td>
</tr>
<tr>
<td>Al-Joulini,NMA 5</td>
<td>Bastin,A 19</td>
</tr>
<tr>
<td>Al-Mukhtar,M 5</td>
<td>Battaglio,M 7, 21</td>
</tr>
<tr>
<td>Alba,P,de 5, 36</td>
<td>Bayne,JM 37, 40</td>
</tr>
<tr>
<td>Aldstadt,JH 15</td>
<td>Baziw,EF 7, 11</td>
</tr>
<tr>
<td>Alencar,JA 17</td>
<td>Beard,RY 34</td>
</tr>
<tr>
<td>Allen,JH 14</td>
<td>Becker,DE 7, 14</td>
</tr>
<tr>
<td>Alinson,AJ 42</td>
<td>Been,K 7, 14, 21</td>
</tr>
<tr>
<td>Almeida,MSS 5, 37</td>
<td>Beer,EE,de 7, 8, 42</td>
</tr>
<tr>
<td>Amann,P 5</td>
<td>Begemann,HKSP 8</td>
</tr>
<tr>
<td>Amar,S 5, 6</td>
<td>Bejkoff,M 37</td>
</tr>
<tr>
<td>Amundsen,T 36</td>
<td>Bellotti,R 6, 7, 8, 2i</td>
</tr>
<tr>
<td>Anagnostopoulos,AG 6, 39</td>
<td>Benoit,J 5, 16</td>
</tr>
<tr>
<td>Anderson,LR 6</td>
<td>Bensaid,A 22</td>
</tr>
<tr>
<td>Andersson,H 26</td>
<td>Berardi,R 8</td>
</tr>
<tr>
<td>Andina,R 35</td>
<td>Berg,AP,van den 8, 9</td>
</tr>
<tr>
<td>Andrawes,KZ 11</td>
<td>Bergdahl,U 4, 9, 24</td>
</tr>
<tr>
<td>Andersen,A 6</td>
<td>Beringen,FL 5, 44</td>
</tr>
<tr>
<td>Andrus,PD 6</td>
<td>Berre,T 6</td>
</tr>
<tr>
<td>Armijo-Palacio,G 15</td>
<td>Berry,SW 34</td>
</tr>
<tr>
<td>Arulanandan,K 6</td>
<td>Bertolino,M 26</td>
</tr>
<tr>
<td>Arulmoli,K 6</td>
<td>Berzins,WE 11</td>
</tr>
<tr>
<td>Aryani,S 6</td>
<td>Bhushan,K 9</td>
</tr>
<tr>
<td>Asada,H 19</td>
<td>Biarez,J 32</td>
</tr>
<tr>
<td>Aubeny,CP 42</td>
<td>Biedermann,B 9, 36</td>
</tr>
<tr>
<td>Axelsson,K 26</td>
<td>Bizzi,G 8</td>
</tr>
<tr>
<td>Aziz,MA 32</td>
<td>Bloh,G,von 19</td>
</tr>
<tr>
<td>Azzouz,AS 6, 7</td>
<td>Bloomquist,DG 6, 14</td>
</tr>
<tr>
<td>Boer,F,de 42</td>
<td>Boer,F,de 42</td>
</tr>
<tr>
<td>Boggess,RL 41</td>
<td>Bogossian,F 15</td>
</tr>
<tr>
<td>Boniadi,F 9</td>
<td>Boominathan,S 35</td>
</tr>
<tr>
<td>Borowczyk,M 9</td>
<td>Bosk,FD 32</td>
</tr>
<tr>
<td>Bos,S,de 32</td>
<td>Borges,A 26</td>
</tr>
<tr>
<td>Boyd,TJ 11</td>
<td>Bowlers,JJ 9</td>
</tr>
<tr>
<td>Boyko,TJ 11</td>
<td>Bozborou,M 10, 23</td>
</tr>
<tr>
<td>Bozzola,M 32</td>
<td>Bozzozuk,M 10, 23</td>
</tr>
</tbody>
</table>
Braithwaite, PA 10
Brand, EW 10
Bredenberg, H 10
Bremmer, C 30
Brenner, RP 10
Briaud, JL 10, 39, 40
Brigham, JE 17
Broms, BB 10
Brons, KF 42
Broug, NWA 10
Brown, DN 10
Brown, PT 33
Brown, RW 42
Bru, J 10
Bruzzi, D 7, 10, 37
Buhr, CA 10
Bukoski, RF 10
Burgin, CR 41
Bustamante, M 11
Butcher, AP 11
Butterfield, R 11
By, T 36

C
Calembert, L 25
Calle, EOF 11
Cambier, JC 11
Cambou, B 35
Campanella, RG 11, 12, 13, 16, 18, 33, 37, 38
Campos, TMP, de 19
Cancelli, A 13
Canou, J 13, 22
Carpentier, R 7, 8, 13
Carter, JJ 5
Casson, M 32
Cestari, F 10
Chameau, JL 32
Chang, MF 13
Chapman, GA 13
Charle, WA 13
Cheeks, JR 13
Chen, BS 13, 27
Chen, CK 43
Chen, PK 13
Chen, QH 40
Chen, XL 40
Cheng-hou, Z 13
Chiasson, P 13
Chin, CT 13
Chokechai Ukritchon 13
Chong, MK 13
Christian, FP 42
Christodoulas, i 18
Christoffersen, HP 25
Chu, MY 22
Cincilla, WA 16

Clausen, CJF 22
Clayton, CRJ 13
Clough, GW 38
Clough, HF 17
Constanza, JS 15
Cooper, SS 17
Corbett, BO 34
Cordon, CR 43
Corson, WM 13
Corte, JF 5
Coutts, JS 10, 21
Coyte, HM 10
Craig, WH 39
Crawford, CB 13
Crettaz, P 13
Crichton, AJ 13
Crippa, V 8
Crooks, JHA 7, 13, 14
Crouser, JC 19
Czizmas, F 20
Culita, C 38
Cutter, WA 25

D
D'Hemricourt, J 41
Dahlberg, R 14
Daniel, DE 9
Danziger, FAB 37
Daoulah, IU 32
Dauncey, PC 30
Davidson, JL 14, 18
Davidson, RR 14
Davie, JR 14
Davies, JA 30
Davies, MCR 14
Davies, MP 11, 12, 21, 33
Dayal, U 14, 42
Decourt, L 14, 25
Delashaw, JE 37
Denver, H 14, 22
Depret, MUA 14, 15
Dessin, MD 15
Deseze, E 40
Dezfulian, H 15
Dias Machado, CF 15
Diaz-Rodriguez, JA 15
Districh, T 15
D'Inzillo, AF 15
Diniz, AM 39
Dion, DJ 26
Djivasky, ML 17
Dobie, MJ 15
Doebrin, MD 13
Donald, JB 13
Donchev, P 28
Dormieux, L 13
<table>
<thead>
<tr>
<th>Authors</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Doskey, PV</td>
<td>15</td>
</tr>
<tr>
<td>Douglas, BJ</td>
<td>15</td>
</tr>
<tr>
<td>Dowding, CH</td>
<td>20</td>
</tr>
<tr>
<td>Driel, P, van</td>
<td>18</td>
</tr>
<tr>
<td>Drnevich, VP</td>
<td>15</td>
</tr>
<tr>
<td>Drozd, K</td>
<td>15</td>
</tr>
<tr>
<td>Duann, SW</td>
<td>13</td>
</tr>
<tr>
<td>Duffin, MJ</td>
<td>29</td>
</tr>
<tr>
<td>Dupla, JC</td>
<td>13</td>
</tr>
<tr>
<td>Durgunoglu, HT</td>
<td>15</td>
</tr>
<tr>
<td>East, DR</td>
<td>16</td>
</tr>
<tr>
<td>Echezuria, HJ</td>
<td>12, 38</td>
</tr>
<tr>
<td>Eden, WJ</td>
<td>16</td>
</tr>
<tr>
<td>Eggenberger, AJ</td>
<td>42</td>
</tr>
<tr>
<td>Eide, O</td>
<td>25</td>
</tr>
<tr>
<td>Eidsmoen, T</td>
<td>16, 25</td>
</tr>
<tr>
<td>El Hachem, M</td>
<td>13</td>
</tr>
<tr>
<td>El-Sohby, MA</td>
<td>16</td>
</tr>
<tr>
<td>Elleboudy, AM</td>
<td>16</td>
</tr>
<tr>
<td>Ellyn, G</td>
<td>38</td>
</tr>
<tr>
<td>Elsworth, D</td>
<td>16</td>
</tr>
<tr>
<td>Elton, DJ</td>
<td>16</td>
</tr>
<tr>
<td>Engemoen, WO</td>
<td>16</td>
</tr>
<tr>
<td>Enoki, M</td>
<td>43</td>
</tr>
<tr>
<td>Enriquez, AS</td>
<td>13</td>
</tr>
<tr>
<td>Erchul, RA</td>
<td>16</td>
</tr>
<tr>
<td>Ergun, MU</td>
<td>15</td>
</tr>
<tr>
<td>Erickson, MD</td>
<td>15</td>
</tr>
<tr>
<td>Eriksson, L</td>
<td>24</td>
</tr>
<tr>
<td>Eriksson, U</td>
<td>9</td>
</tr>
<tr>
<td>Ervin, MC</td>
<td>16</td>
</tr>
<tr>
<td>Erwig, H</td>
<td>16</td>
</tr>
<tr>
<td>Escario, V</td>
<td>16</td>
</tr>
<tr>
<td>Eskilson, S</td>
<td>24, 29</td>
</tr>
<tr>
<td>Evans, B</td>
<td>16</td>
</tr>
<tr>
<td>Everard, JL</td>
<td>11</td>
</tr>
<tr>
<td>Everts, HJ</td>
<td>42</td>
</tr>
<tr>
<td>Forrest, JB</td>
<td>17</td>
</tr>
<tr>
<td>Frank, R</td>
<td>5</td>
</tr>
<tr>
<td>Franklin, AG</td>
<td>17</td>
</tr>
<tr>
<td>Frankowski, Z</td>
<td>9</td>
</tr>
<tr>
<td>Freeman, TJ</td>
<td>17</td>
</tr>
<tr>
<td>French, J</td>
<td>17</td>
</tr>
<tr>
<td>Fritton, DD</td>
<td>17</td>
</tr>
<tr>
<td>Frost, JD</td>
<td>25</td>
</tr>
<tr>
<td>Fuglevand, PF</td>
<td>17</td>
</tr>
<tr>
<td>Fukasawa, T</td>
<td>19</td>
</tr>
<tr>
<td>Funegard, EG</td>
<td>21, 39</td>
</tr>
<tr>
<td>Förhn, PMB</td>
<td>35</td>
</tr>
<tr>
<td>Gaberc, A</td>
<td>17</td>
</tr>
<tr>
<td>Gardemeister, R</td>
<td>17</td>
</tr>
<tr>
<td>Gardener, R</td>
<td>6</td>
</tr>
<tr>
<td>Gardner, WS</td>
<td>18, 28</td>
</tr>
<tr>
<td>Garlanger, JE</td>
<td>42</td>
</tr>
<tr>
<td>Geise, JM</td>
<td>40</td>
</tr>
<tr>
<td>Genevois, R</td>
<td>18</td>
</tr>
<tr>
<td>Genov, R</td>
<td>28</td>
</tr>
<tr>
<td>Gens, A</td>
<td>19</td>
</tr>
<tr>
<td>Ghataora, GS</td>
<td>10</td>
</tr>
<tr>
<td>Ghazali, FM</td>
<td>6</td>
</tr>
<tr>
<td>Ghinelli, A</td>
<td>18</td>
</tr>
<tr>
<td>Ghionna, VN</td>
<td>6, 7, 8, 21</td>
</tr>
<tr>
<td>Ghosh, A</td>
<td>23</td>
</tr>
<tr>
<td>Ghosh, N</td>
<td>18</td>
</tr>
<tr>
<td>Gianeselli, L</td>
<td>11</td>
</tr>
<tr>
<td>Giannaros, H</td>
<td>18</td>
</tr>
<tr>
<td>Gielly, J</td>
<td>18, 24</td>
</tr>
<tr>
<td>Gijt, JG, de</td>
<td>22</td>
</tr>
<tr>
<td>Gill, DE</td>
<td>25</td>
</tr>
<tr>
<td>Gillespie, D</td>
<td>11, 12, 16, 18, 25, 33</td>
</tr>
<tr>
<td>Girousse, L</td>
<td>35</td>
</tr>
<tr>
<td>Goel, MC</td>
<td>18</td>
</tr>
<tr>
<td>Goelen, E</td>
<td>8</td>
</tr>
<tr>
<td>Goh, AL</td>
<td>17</td>
</tr>
<tr>
<td>Golia, G</td>
<td>14</td>
</tr>
<tr>
<td>Gorm, CT</td>
<td>15</td>
</tr>
<tr>
<td>Graaf, HC, van de</td>
<td>18, 36</td>
</tr>
<tr>
<td>Greeuw, G</td>
<td>13, 18</td>
</tr>
<tr>
<td>Greig, JW</td>
<td>12, 33</td>
</tr>
<tr>
<td>Griffin, KM</td>
<td>21</td>
</tr>
<tr>
<td>Grof, I</td>
<td>33</td>
</tr>
<tr>
<td>Gruia, A</td>
<td>31</td>
</tr>
<tr>
<td>Guadagnini, R</td>
<td>13</td>
</tr>
<tr>
<td>Gupta, R</td>
<td>18, 36</td>
</tr>
<tr>
<td>Gwizzdala, K</td>
<td>18, 39, 40</td>
</tr>
<tr>
<td>Györfy, J</td>
<td>20</td>
</tr>
<tr>
<td>Habetha, E</td>
<td>19</td>
</tr>
<tr>
<td>Haegeman, W</td>
<td>20</td>
</tr>
<tr>
<td>Hansen, A</td>
<td>19</td>
</tr>
</tbody>
</table>
Hansen, G 29
Hanzawa, H 19
Harder, H 19
Hartevelt, JJA 27
Hasan, Z 32
Hausner, H 17
Heijnen, WJ 8, 11, 19
Henderson, T 37
Henriet, FP 19
Hensley, PJ 16
Hepton, P 19
Hever, M 8
Hight, DW 19
Hintze, S 10
Hitchman, R 19
Holden, JC 19
Holden, JMW 19
Holeyman, A 19
Holm, G 26
Holtz, RD 25, 27
Holzlohner, U 15
Hoogendoorn, HG 35
Hoogendoorn, R 36
Hoodydonk, WR, van 42
Hopkins, TC 15
Horsnell, MR 19, 43
Horvitz, GE 19
Houghton, LE 10
Houlsby, GT 19, 20, 34, 36, 39
Houston, WN 28
Howie, JA 11, 42
Howland, J 16, 25
Hrazdilova, I 20
Hryciw, RD 20
Hu, IC 13
Huang, AB 20
Huang, SM 20
Hubacek, H 20
Huergo, PJ 30
Hughes, JMO 16, 35, 42
Huitzer, GP 20
Hunt, SD 40
Huntsman, SR 20
Høeg, K 5

J
Jacobs, PA 21
Jaeger, J, de 7, 8
Jain, AK 21
Jain, CK 43
Jain, GRS 15
Jain, PK 15
Jain, SK 14
Jain, UC 43
Jain, VK 21
Jaks, MB 21
Jamiołkowski, M 6, 7, 8, 18, 21, 24
Järbo, N 21, 35, 36
Jefferys, MG 7, 14, 21
Jekel, J 13, 18, 21
Jensen, CN 22
Jeragh, AM 21
Jezequel, JF 5, 6
Jian-Xin Yuan 21
Johannesson, LE 21, 22
John, SBP 22
Jolly, G 12, 42
Jones, GA 22
Jonghe, A, de 8
Joustra, K 8, 22
Juarez-Badillo, E 32
Juhrend, JE 37
Juran, I 13, 22, 26
Jönsson, L 21
Jörgensen, M 22

K
Kabir, MG 22, 26
Kaggwa, WS 21
Kaku, K 23
Kalteziotis, NA 43
Kamata, M 22
Kao, TC 13
Kappmeyer, JC 37
Karachorov, P 28
Karaﬁath, LL 22, 30
Kasim, AG 22
Kattan, A 13
Kay, JN 22, 27, 28
Keaveny, JM 22, 28
Kemper, JB, Jr 27
Kessler, K 36
Khazaf, K 10
Khan, AM 6
Kibria, S 27
Kilpatrick, BL 31
Kishida, T 19
Kjekstad, O 22, 43
Kjesbu, E 16
Klebjuk, LW 20
Kleven, A 6, 25
<table>
<thead>
<tr>
<th>Literature on Cone Penetration Testing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klohn, EJ 12</td>
</tr>
<tr>
<td>Klos, J 39</td>
</tr>
<tr>
<td>Ko, HY 17</td>
</tr>
<tr>
<td>Kobayashi, S 29</td>
</tr>
<tr>
<td>Kok, L 23</td>
</tr>
<tr>
<td>Kokan, MJ 11, 42</td>
</tr>
<tr>
<td>Komornik, A 23</td>
</tr>
<tr>
<td>Konrad, JM 23</td>
</tr>
<tr>
<td>Kosaka, M 30</td>
</tr>
<tr>
<td>Kou, T 23</td>
</tr>
<tr>
<td>Kovacic, D 29</td>
</tr>
<tr>
<td>Krails, PVS 23</td>
</tr>
<tr>
<td>Kratz, H 33</td>
</tr>
<tr>
<td>Kriek, RJ 23</td>
</tr>
<tr>
<td>Krop, A 17</td>
</tr>
<tr>
<td>Kruijzinga, J 23</td>
</tr>
<tr>
<td>Kulatiak, PHSW 23</td>
</tr>
<tr>
<td>Kulhavy, FH 27</td>
</tr>
<tr>
<td>Kuor, JM 15</td>
</tr>
<tr>
<td>Kurfurst, PFI 12, 23</td>
</tr>
<tr>
<td>Kurup, PU 23</td>
</tr>
<tr>
<td>Kvasnicka, P 30</td>
</tr>
<tr>
<td>La Rochelle, P 24, 34</td>
</tr>
<tr>
<td>Lacasse, S 5, 24, 25</td>
</tr>
<tr>
<td>Ladanyi, B 24, 25</td>
</tr>
<tr>
<td>Ladd, CC 6, 7, 24, 42</td>
</tr>
<tr>
<td>Laffleur, J 13</td>
</tr>
<tr>
<td>Laing, N 12</td>
</tr>
<tr>
<td>Laird, CL 40</td>
</tr>
<tr>
<td>Lancelotta, R 7, 8, 21, 24</td>
</tr>
<tr>
<td>Lang, FD, de 23</td>
</tr>
<tr>
<td>Larea, P 18, 24</td>
</tr>
<tr>
<td>Larson, NB 24</td>
</tr>
<tr>
<td>Larsson, R 24, 29</td>
</tr>
<tr>
<td>Last, NC 11</td>
</tr>
<tr>
<td>Law, KT 13, 23</td>
</tr>
<tr>
<td>Leach, B 7</td>
</tr>
<tr>
<td>Ledoux, JL 10, 25</td>
</tr>
<tr>
<td>Lee, IM 43</td>
</tr>
<tr>
<td>Lee, SL 21</td>
</tr>
<tr>
<td>Leeuw, EH, de 25</td>
</tr>
<tr>
<td>Lehnert, J 15</td>
</tr>
<tr>
<td>Lenn, V 39</td>
</tr>
<tr>
<td>Leite, MH 25</td>
</tr>
<tr>
<td>Lenasson, H 5</td>
</tr>
<tr>
<td>Leonard, C 31</td>
</tr>
<tr>
<td>Leonard, RJ 10</td>
</tr>
<tr>
<td>Leandras, GA 25</td>
</tr>
<tr>
<td>Leont, JL 32</td>
</tr>
<tr>
<td>Leroueil, S 24, 34, 39</td>
</tr>
<tr>
<td>Levacher, D 25</td>
</tr>
<tr>
<td>Levadoux, JN 7, 25</td>
</tr>
<tr>
<td>Liang, RYK 40</td>
</tr>
<tr>
<td>Lima, DC, de 25</td>
</tr>
<tr>
<td>Lingnau, BE 7</td>
</tr>
<tr>
<td>Lisac, Z 30</td>
</tr>
<tr>
<td>Lo Presti, DCF 7</td>
</tr>
<tr>
<td>Long, MM 25</td>
</tr>
<tr>
<td>Louisberg, E 7, 8</td>
</tr>
<tr>
<td>Louisberg, M 23</td>
</tr>
<tr>
<td>Lowery, B 25</td>
</tr>
<tr>
<td>Lu, WX 42</td>
</tr>
<tr>
<td>Lubking, P 25</td>
</tr>
<tr>
<td>Lugher, HJ 25</td>
</tr>
<tr>
<td>Luke, K 25</td>
</tr>
<tr>
<td>Lunac, T 5, 6, 16, 22, 24, 25, 28, 31, 32, 33, 36, 40</td>
</tr>
<tr>
<td>Luo, MY 43</td>
</tr>
<tr>
<td>Lutengger, AJ 20, 22, 26</td>
</tr>
<tr>
<td>Lytton, RL 10</td>
</tr>
<tr>
<td>Ma, MY 20</td>
</tr>
<tr>
<td>Madshus, C 5</td>
</tr>
<tr>
<td>Magnusson, O 26</td>
</tr>
<tr>
<td>Mahar, LJ 26</td>
</tr>
<tr>
<td>Mahmod-Zadeegan, B 26</td>
</tr>
<tr>
<td>Mahmod, MA 5</td>
</tr>
<tr>
<td>Malmbror, BS 26</td>
</tr>
<tr>
<td>Malone, PG 30</td>
</tr>
<tr>
<td>Manassero, M 8, 26</td>
</tr>
<tr>
<td>Manfredini, G 8</td>
</tr>
<tr>
<td>Maniscalco, R 7</td>
</tr>
<tr>
<td>Maranda, R 26</td>
</tr>
<tr>
<td>Marchetti, S 21, 26</td>
</tr>
<tr>
<td>Marcu, A 26</td>
</tr>
<tr>
<td>Marr, LS 26</td>
</tr>
<tr>
<td>Marsland, A 26, 32</td>
</tr>
<tr>
<td>Martin, RE 26</td>
</tr>
<tr>
<td>Martin, RT 7, 42</td>
</tr>
<tr>
<td>Martins, FF 27</td>
</tr>
<tr>
<td>Martins, JB 27</td>
</tr>
<tr>
<td>Maschowitz, G 33</td>
</tr>
<tr>
<td>Masood, T 27</td>
</tr>
<tr>
<td>Massarsch, KR 27</td>
</tr>
<tr>
<td>Matthews, MC 13</td>
</tr>
<tr>
<td>Maurenbrecher, PM 27</td>
</tr>
<tr>
<td>Mayne, PW 13, 27</td>
</tr>
<tr>
<td>May, RE 37</td>
</tr>
<tr>
<td>Mazzucato, A 27</td>
</tr>
<tr>
<td>McElmeel, K 11</td>
</tr>
<tr>
<td>McKie, PW 41</td>
</tr>
<tr>
<td>Meegoda, NJ 6</td>
</tr>
<tr>
<td>Meganck, J 27</td>
</tr>
<tr>
<td>Meigh, AC 27</td>
</tr>
<tr>
<td>Mello, RN, de 15</td>
</tr>
<tr>
<td>Menard, J 10, 25</td>
</tr>
<tr>
<td>Meyerhof, GG 27, 28</td>
</tr>
<tr>
<td>Michaud, D 34</td>
</tr>
<tr>
<td>Milevski, DN 28</td>
</tr>
</tbody>
</table>
Miley, WG 6
Miller, C 40
Miller, GA 20
Milovic, D 28
Minkov, M 28
Mirzan, J 10
Mitchell, B 24
Mitchell, JK 15, 20, 22, 27, 28, 40, 41
Mitchell, PW 28
Miura, S 28
Mival, KN 42
Miyashita, T 29
Mlynarek, ZB 28, 29, 35
Moh, ZC 10, 29
Montois, B 19
Mooney, PE 34
Morbois, A 6
Morgan, MR 31
Morrison, MJ 7
Mortensen, JK 29
Mortensen, RA 14
Muhovec, J 29
Muls, H 29
Mulabdic, M 24, 29
Muro, T 43
Muromachi, T 29, 40
Murphy, W 14
Muxfeldt, AS 15
Myers, TE 29

N
Nakayama, Y 29
Nash, DFT 29
Natarajan, TK 29
Nathan, SV 18
Nazaret, JP 5
Nelissen, HAM 29
Niccolai, C 30
Niedzielski, A 28
Nieuwenhuis, JD 25
Nieuwenhuis, JK 30
Niyama, S 14
Noble, DF 16
Nobuyama, M 36, 37
Noto, S 35
Noya, R 21
Nowatzki, EA 30
Novosel, T 30
Nutt, NRF 19, 30
Nuyens, J 30
Nyirenda, Z 37
Norgaard, JHP 30

O
O’Neill, MW 26, 30
O’Riordan, NJ 30
Oakley, RE, III 30
Oguro, I 29
Ohyu, S 30
Olic, JJ 30
Olivari, G 35
Olsen, RS 15, 30
Orozco, JM 32
Ottosson, E 9
Ozawa, Y 30

P
Panichpatanon, S 10
Paquay, J 7, 8
Perez, L 31
Parkin, AK 31
Parry, RHG 5, 14
Pasqualini, E 6, 7, 8, 21
Pass, DG 5
Patil, UK 34
Paunescu, M 31
Pedroni, S 8, 18
Peiffer, H 20
Pellegrini, M 13
Perez, JY 14
Peterson, RW 31
Phamvan, P 34
Phillipponnat, G 31
Phillips, R 31
Piccoli, S 18
Pilai, VS 31
Placzek, D 31
Plewes, HD 31
Pluimgraaff, DJMH 42
Popescu, M 26
Popovic, M 31, 35
Porter, JR 42
Poskitt, TJ 31
Post, ML 44
Potter, JC 43
Powell, GW 26
Powell, JIM 25, 26, 31, 33
Power, PT 31
Prakasa Rao, AVSN 43
Price, G 31
Puech, A 32
Puppala, AJ 32

Q
Quartermain, A 32
Quarterman, RST 25, 26, 31

R
Rad, NS 25, 32
Radhakrishna, R 32
Rafalovich, A 42
Ramage, J 32
S
Sagaseta,C 34
Sainey,TJ 38
Sakagami,T 39
Sakai,K 29
Sakai,Y 29, 40
Salem,AM 23
Samhbandharaka,S 34
Samson,L 10
Sandven,R 34, 35, 36
Sanglerat,G 18, 24, 28, 29, 35
Sanglerat,TRA 35
Santamarina,C 39
Santoyo,E 35
Sarac,DZ 31, 35
Saran,S 15
Sargunan,A 35
Sasaki,H 35
Saye,SR 26
Schaap,LHJ 35, 44

Schenk,P 18
Schmertmann,HH 12, 35, 36
Schneider,F 19, 36
Schokking,F 18, 36
Schottes,P 8
Schulze,E 36
Scott,RF 7
Schet,B 31
Seed,HB 6, 36
Sejourne,M 35
Selig,ET 10
Seli,JJ 26
Sellgren,E 36
Senapathy,H 14
Senneseset,K 21, 32, 35, 36
Sgoula,J 24
Shabrou,J 5
Sharma,HD 36
Sharp,KD 6
Sherwood,DE 34
Shibata,T 36, 37
Shields,DH 11, 37
Shinde,SB 20
Shrivastava,AK 36, 37
Shukla,R 43
Silence,P 25
Siller,TJ 42
Sil,
Sill,G 37
Silvestri,V 37
Simone,F,de 14
Simons,NE 13
Skomedal,E 37
Sladen,JA 37
Smith,EB 26
Smith,IM 42
Smith,PD 37
Smith,RE 41
Smits,FP 18, 30, 37, 40
Smolley,M 37
Solymar,ZV 28, 37
Sopena,LM 37
Soranzo,M 27
Soulard,P 25
Soulie,M 13
Srivastava,NK 43
St John,HD 25
Stark,TD 37
Steensen-Bach,JO 37
Stefanoff,G 37
Stettler,DR 19
Stevanovic,S 28
Stewart,DP 37
Stewart,WP 12, 37, 38
Stroia,F 38
Strutynsky,AI 38
Sugawara,N 38

52
<table>
<thead>
<tr>
<th>Name</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sullivan, RA</td>
<td>38</td>
</tr>
<tr>
<td>Sully, JP</td>
<td>11, 12, 33, 38</td>
</tr>
<tr>
<td>Sunami, S</td>
<td>30</td>
</tr>
<tr>
<td>Sunderland, GR</td>
<td>44</td>
</tr>
<tr>
<td>Superbo, S</td>
<td>7</td>
</tr>
<tr>
<td>Suppiah, A</td>
<td>14</td>
</tr>
<tr>
<td>Sutchiffe, G</td>
<td>38</td>
</tr>
<tr>
<td>Svane, G</td>
<td>36</td>
</tr>
<tr>
<td>Svasta, M</td>
<td>15</td>
</tr>
<tr>
<td>Swain, CW</td>
<td>16, 38</td>
</tr>
<tr>
<td>Swanikto, TD</td>
<td>34</td>
</tr>
<tr>
<td>Sweeney, BP</td>
<td>38</td>
</tr>
<tr>
<td>Sy, A</td>
<td>12, 33</td>
</tr>
<tr>
<td>Szandtner, G</td>
<td>38</td>
</tr>
<tr>
<td>Sorensen, B</td>
<td>29</td>
</tr>
<tr>
<td>Tabib, C</td>
<td>37</td>
</tr>
<tr>
<td>Takahashi, M</td>
<td>19</td>
</tr>
<tr>
<td>Tallin, AG</td>
<td>39</td>
</tr>
<tr>
<td>Tamirinnine, M</td>
<td>17, 39</td>
</tr>
<tr>
<td>Tan, TS</td>
<td>21</td>
</tr>
<tr>
<td>Tanaka, A</td>
<td>39</td>
</tr>
<tr>
<td>Tanaka, Y</td>
<td>39</td>
</tr>
<tr>
<td>Tand, KE</td>
<td>39</td>
</tr>
<tr>
<td>Tang, XJ</td>
<td>43</td>
</tr>
<tr>
<td>Tang Shi-dong</td>
<td>39</td>
</tr>
<tr>
<td>Tanguay, L</td>
<td>34</td>
</tr>
<tr>
<td>Tani, K</td>
<td>39</td>
</tr>
<tr>
<td>Tanizawa, F</td>
<td>21, 28</td>
</tr>
<tr>
<td>Tarcsai, GY</td>
<td>20</td>
</tr>
<tr>
<td>Tassios, TP</td>
<td>39</td>
</tr>
<tr>
<td>Tatsuoka, F</td>
<td>21</td>
</tr>
<tr>
<td>Tavenas, F</td>
<td>24, 34, 39</td>
</tr>
<tr>
<td>Te Kamp, W</td>
<td>22, 39</td>
</tr>
<tr>
<td>Teferra, A</td>
<td>39</td>
</tr>
<tr>
<td>Teh, CI</td>
<td>20, 39</td>
</tr>
<tr>
<td>Tejchman, A</td>
<td>39, 40</td>
</tr>
<tr>
<td>Teparaksa, W</td>
<td>37</td>
</tr>
<tr>
<td>Thorburn, S</td>
<td>32, 34, 40</td>
</tr>
<tr>
<td>Thornton, SL</td>
<td>42</td>
</tr>
<tr>
<td>Tiegess, AWW</td>
<td>40</td>
</tr>
<tr>
<td>Tjelta, TI</td>
<td>25, 40</td>
</tr>
<tr>
<td>Todorovic, T</td>
<td>28</td>
</tr>
<tr>
<td>Togrol, E</td>
<td>15</td>
</tr>
<tr>
<td>Tokimatsu, K</td>
<td>40</td>
</tr>
<tr>
<td>Toki, S</td>
<td>28</td>
</tr>
<tr>
<td>Tolila, DS</td>
<td>29, 40</td>
</tr>
<tr>
<td>Tomaszewski, M</td>
<td>29</td>
</tr>
<tr>
<td>Tong, YX</td>
<td>40</td>
</tr>
<tr>
<td>Tonks, DM</td>
<td>40</td>
</tr>
<tr>
<td>Tooan, FE</td>
<td>20</td>
</tr>
<tr>
<td>Tordella, L</td>
<td>21</td>
</tr>
<tr>
<td>Torstenson, BA</td>
<td>40</td>
</tr>
<tr>
<td>Toutounji, A</td>
<td>32</td>
</tr>
<tr>
<td>Tran vo Nhiem</td>
<td>35</td>
</tr>
<tr>
<td>Treen, CR</td>
<td>40</td>
</tr>
<tr>
<td>Tremblay, M</td>
<td>34</td>
</tr>
<tr>
<td>Treinter, NA</td>
<td>40</td>
</tr>
<tr>
<td>Triggs, JF</td>
<td>40</td>
</tr>
<tr>
<td>Tringale, PT</td>
<td>40, 41</td>
</tr>
<tr>
<td>Trofimenkov, JG</td>
<td>40</td>
</tr>
<tr>
<td>Trofimenkov, YG</td>
<td>40</td>
</tr>
<tr>
<td>Tschuschke, W</td>
<td>28, 29</td>
</tr>
<tr>
<td>Tsuchiya, H</td>
<td>29, 40</td>
</tr>
<tr>
<td>Tucker, KD</td>
<td>40</td>
</tr>
<tr>
<td>Tucker, LM</td>
<td>10, 40</td>
</tr>
<tr>
<td>Tumay, MT</td>
<td>5, 22, 23, 25, 26, 32, 40, 41</td>
</tr>
<tr>
<td>Turnbull, KW</td>
<td>32</td>
</tr>
<tr>
<td>Tusic, V</td>
<td>30</td>
</tr>
<tr>
<td>Vakili, J</td>
<td>41</td>
</tr>
<tr>
<td>Valsangkar, AJ</td>
<td>28, 31</td>
</tr>
<tr>
<td>Vannucchi, G</td>
<td>18</td>
</tr>
<tr>
<td>Veen, C, van der</td>
<td>41</td>
</tr>
<tr>
<td>Vieismans, A</td>
<td>41</td>
</tr>
<tr>
<td>Verbrugge, JC</td>
<td>41</td>
</tr>
<tr>
<td>Vermeier, PA</td>
<td>9, 41</td>
</tr>
<tr>
<td>Vermeiden, J</td>
<td>18</td>
</tr>
<tr>
<td>Viergever, MA</td>
<td>41</td>
</tr>
<tr>
<td>Villet, WCB</td>
<td>41</td>
</tr>
<tr>
<td>Vinale, F</td>
<td>32</td>
</tr>
<tr>
<td>Vircly, D</td>
<td>24</td>
</tr>
<tr>
<td>Vitvatrat, V</td>
<td>7</td>
</tr>
<tr>
<td>Vlasblom, A</td>
<td>41</td>
</tr>
<tr>
<td>Vogrincic, G</td>
<td>17</td>
</tr>
<tr>
<td>Vos, J, de</td>
<td>41</td>
</tr>
<tr>
<td>Voyiadjis, GZ</td>
<td>23</td>
</tr>
<tr>
<td>Wahl, HE</td>
<td>41</td>
</tr>
<tr>
<td>Waitkus, RA</td>
<td>41</td>
</tr>
<tr>
<td>Wakamatsu, M</td>
<td>30</td>
</tr>
<tr>
<td>Wakeling, TRM</td>
<td>41</td>
</tr>
<tr>
<td>Wallays, M</td>
<td>7, 8</td>
</tr>
<tr>
<td>Wambaye, A, van</td>
<td>41</td>
</tr>
<tr>
<td>Wang, C</td>
<td>42</td>
</tr>
<tr>
<td>Wang, ZQ</td>
<td>42</td>
</tr>
<tr>
<td>Wanichkorakit, B</td>
<td>34</td>
</tr>
<tr>
<td>Ward, WA</td>
<td>42</td>
</tr>
<tr>
<td>Wardle, IF</td>
<td>31</td>
</tr>
<tr>
<td>Waschkowski, E</td>
<td>5, 6, 16</td>
</tr>
<tr>
<td>Waterton, C</td>
<td>38</td>
</tr>
<tr>
<td>Wauthier, J</td>
<td>19</td>
</tr>
<tr>
<td>Webb, D</td>
<td>42</td>
</tr>
<tr>
<td>Webb, DL</td>
<td>42</td>
</tr>
<tr>
<td>Webb, JD</td>
<td>42</td>
</tr>
<tr>
<td>Weber, L</td>
<td>8, 42</td>
</tr>
<tr>
<td>Webster, SL</td>
<td>42</td>
</tr>
<tr>
<td>Weemees, J</td>
<td>12, 42</td>
</tr>
<tr>
<td>Welch, RC</td>
<td>42</td>
</tr>
</tbody>
</table>
Welsh, JP 42
Westerlund, GJ 35
Whittle, AJ 42
Wickremasinghe, DS 12
Wieringa, JBM, van 42
Wightman, A 33
Williams, SS, Jr 32
Wills, SM 42
Windle, D 42
Wissa, AEZ 7, 42
Wissenden, AF 13
Withers, NJ 20, 42
Witham, JL 42
Woeller, DJ 23, 33, 40, 42
Wollenhaupt, H 5
Wolski, W 42
Wright, ND 42
Wroth, CP 20, 42, 43
Wu, G 17
Wu, TH 43

X
Xie, Y 43

Y
Yagi, N 43
Yamamoto, Y 29
Yao Yu 26

Yazabe, R 43
Yilmaz, R 40, 43
Yogachandran, C 6
Yong, KY 32
Yong, RN 43
Youd, TL 6
Youssef, AFA 43
Yudhbir 43

Z
Zebdi, M 24
Zeindler, H 13
Zeng, GX 43
Zervogiannis, CS 43
Zhang, FL 43
Zhang, GX 43
Zhang, NR 43
Zhou, J 43
Zhou, SG 21, 43
Zhu Xiao-lin 39
Zimmie, TF 43
Zuidberg, HM 35, 44
Zuo, ZS 43
Zwaag, GL, van der 44
Zyl, D, van 22

A
Åstedt, B 26
The Swedish Geotechnical Institute was founded in 1944, and deals with research, information and consultancy within the geotechnical field. SGI runs the Swedish central geotechnical library, and the literature service collects, classifies and stores geotechnical literature from the whole world. Up to now, September 1995, SGI has classified some 90,000 articles in books, articles in scientific geotechnical journals, papers in conference proceedings, patents, building codes etc.

SGI data base
In early 1976, SGI started to store bibliographic records in a computerized retrieval system, called SGILINE. Up to now, SGI has stored approximately 45,000 records, referring mainly to literature available in the SGI library. We add about 2,000 records to the system each year.

Retrieval
Literature retrievals in SGILINE is carried out by the use of keyword, geographical keyword, language, author, title, publication, year and IGC classification. All of these can be combined according to the rules of Boolean algebra - the operators and, or, not.

Retrieval of literature can also be carried out using manual systems, such as our own library catalogue or by the use of other worldwide computerized systems to which we have access, such as ESA/IRS, where file # 70 is Asian Geotechnology.

Content
The records in SGILINE can be described as follows; 70 % is written in English, 15 % in Swedish, 6 % in German, 4 % in French and the final 5 % in other languages. Our ambition is to classify and index not only the content of, for example, conference proceedings, but also most of the articles. Of course, all important conferences are covered as well as journals such as Geotechnique, Canadian Geotechnical Journal and the ASCE Journals.

Classification
SGI classifies all geotechnical literature according to the International Geotechnical Classification System - IGC. The literature is also indexed by the use of approximately 700 geotechnical keywords, including the 347 keywords from the Geodex Retrieval System.

Library
The SGI Library has some 10,000 books, more than 1,500 conference proceedings and subscribes to several hundred of international periodicals. Since the foundation of the institute, the library has also made up a worldwide network of exchange partners; today the number is 350, which is an important way of keeping up to date with the research going at these institutions.

Accession List
The SGI Accession List is produced monthly (except July) and contains bibliographic records added to SGILINE. The SGI Accession List is free of charge.
The Swedish Geotechnical Institute is a government agency dealing with geotechnical research, information and consultancy.

The purpose of the Institute is to achieve better techniques, safety and economy by the correct application of geotechnical knowledge in the building process.

Research
Development of techniques for soil improvement and foundation engineering. Environmental and energy geotechnics. Design and development of field and laboratory equipment.

Information
Research reports, brochures, courses. Running the Swedish central geotechnical library with more than 90,000 documents. Computerized retrieval system.

Consultancy
Design, advice and recommendations, including site investigations, field and laboratory measurements. Technical expert in the event of disputes.

Statens geotekniska institut
Swedish Geotechnical Institute
S-581 93 Linköping, Sweden
Telefon: 013-20 18 00, Int + 46 13 201800
Fax: 013-20 19 14, Int + 46 13 201914